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Introduction

Our focus here is on Bayesian MMSE estimators. We know that such
estimators are given as the conditional mean of the unknown parameter(s):

θ̂MMSE(y) = E[Θ |Y = y]

The conditional mean can often be difficult to compute. Two approaches
to getting useful results:

◮ Restrict the model, e.g. linear and Gaussian

Y = HΘ+W

with H known and Θ and W both Gaussian.

◮ Restrict the class of estimators, e.g. linear (actually affine)
estimators

θ̂(y) = c+A⊤y

Linear estimators may not be as good as general Bayesian estimators,
but they are interesting since they can be computationally convenient.
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Review: MMSE Estimation in the Linear Gaussian Model

In the linear Gaussian model, we have

θ̂MMSE(y) = E[Θ |Y = y]

= E[Θ] + ΣΘH
⊤

(

HΣΘH
⊤ +ΣW

)−1

(y −HE[Θ])

= c+A⊤y

In this case, the conditional mean is linear in the observations with

A⊤ = ΣΘH
⊤

(

HΣΘH
⊤ +ΣW

)−1

c = E[Θ]− ΣΘH
⊤

(

HΣΘH
⊤ +ΣW

)−1

HE[Θ]

Hence, there is no loss of optimality in restricting ourselves to a linear

MMSE estimator in the context of linear Gaussian models.
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Scalar Linear MMSE Estimation (1/3)

Assume Θ ∈ R. Our LMMSE estimator must be of the form

θ̂(y) = c+A⊤y

with A = [a0, . . . , aN−1]
⊤ ∈ R

N×1 and c ∈ R. The problem here is to find
the coefficients a0, . . . , aN−1 and c to minimize the MSE.

The MSE can be written as a function of A and c as follows:

J(A, c) = E

[

(

θ̂(Y )−Θ
)2

]

= E

[

(

c+A⊤Y −Θ
)2

]

= E

[

(

(c− E[Θ]) +A⊤Y − (Θ− E[Θ])
)2

]

= (c− E[Θ])2 +A⊤E
[

Y Y ⊤

]

A+ var
[

Θ2
]

+ 2(c− E[Θ])A⊤E [Y ]− 2(c − E[Θ])E [Θ− E[Θ]]

− 2A⊤E [Y (Θ− E[Θ])]
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Scalar Linear MMSE Estimation (2/3)

We have an expression for the MSE

J(A, c) = (c− E[Θ])2 +A⊤E
[

Y Y ⊤

]

A+ var
[

Θ2
]

+ 2(c− E[Θ])A⊤E [Y ]− 2A⊤E [Y (Θ− E[Θ])]

We want to find A and c to minimize J . We can take the gradient of
J(A, c) with respect to [c, a0, . . . , aN − 1]⊤ and set it equal to zero...

[

2(c − E[Θ]) + 2A⊤E[Y ]
2E

[

Y Y ⊤
]

A+ 2(c− E[Θ])E [Y ]− 2E [Y (Θ− E[Θ])]

]

=

[

0
0

]

How to solve:

◮ First equation implies c = E[Θ]−A⊤E[Y ] = E[Θ]− E[Y ⊤]A.

◮ Plug this result into the second equation and solve for A.
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Scalar Linear MMSE Estimation (3/3)

The second equation now becomes

E
[

Y Y ⊤

]

A+
(

E[Θ]− E[Y ⊤]A− E[Θ]
)

E [Y ]− E [Y (Θ− E[Θ])] = 0

E
[

Y Y ⊤

]

A− E [Y ] E[Y ⊤]A− E [YΘ] + E [Y ] E[Θ] = 0
(

E
[

Y Y ⊤

]

− E [Y ] E[Y ⊤]
)

A = E [YΘ]− E [Y ] E[Θ]

Recalling that

cov(Y, Y ) = E{Y Y ⊤} − E{Y }E{Y ⊤}

cov(Y,X) = E{Y X} − E{Y }E{X} (when X is a scalar)

we can write

ALMMSE = [cov(Y, Y )]−1 cov(Y,Θ)

and cLMMSE follows from c = E[Θ]−A⊤

LMMSEE[Y ].
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Summary and Remarks

Putting it all together, we have

θ̂LMMSE(y) = c+A⊤

LMMSEY

= E[Θ]−A⊤

LMMSEE [Y ] +A⊤

LMMSEY

= E[Θ] +A⊤

LMMSE (Y − E [Y ])

= E[Θ] + cov(Θ, Y ) [cov(Y, Y )]
−1

(Y − E [Y ])

Remarks:

◮ This is the same form as we saw with the linear Gaussian model. Our
derivation did not assume a linear Gaussian model, however. We only
assumed a linear estimator.

◮ Computation of θ̂LMMSE(y) only requires knowledge of means and
covariances. We do not need full knowledge of the joint distributions.

◮ This result easily extends to p× 1 vector parameters (the MSE for each
parameter can be minimized separately). A becomes N × p and c becomes
p× 1. E[Θ] also becomes p× 1 and cov(Θ, Y ) becomes p×N .
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