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Normed Vector Spaces and Euclidean Geometry Review

A “normed vector space” is a set that has some special properties like

◮ Closed under addition

◮ Closed under scalar multiplication

◮ etc.

and a norm satisfying certain properties like ‖u‖ > 0 unless u = 0,
‖αu‖ = |α|‖u‖ for real α, and a triangle inequality.

A well-known example of a normed vector space is Rn. Given u ∈ R
n and

v ∈ R
n, we can define a norm in this vector space as ‖u‖ =

√
u⊤u and

◮ the squared length of a vector is given by the inner product of the

vector with itself, i.e. u⊤u and v⊤v

◮ the vectors u and v are orthogonal if their inner product u⊤v = 0.

◮ the subspace spanned by u and v is all possible coordinates formed by

linear combinations of u and v
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Vector Spaces of Random Variables

Zero-mean random variables can also be thought of as “vectors” in some

vector space. Denoting H as the set of all zero-mean random variables, it

can be shown that H has all the properties of a vector space, e.g. closed

under addition and scalar multiplication.

Moreover, we can use expectation as a norm in this vector space.

Specifically, for U and V in H, we can say

◮ the squared “length” of a random variable is given by the inner

product of the “vector” with itself, i.e. E[U2] = var(U) and
E[V 2] = var(V )

◮ the random variables U and V are orthogonal if their inner product

E[UV ] = cov(U, V ) = 0.

◮ the subspace spanned by U and V is all possible coordinates formed

by linear combinations of U and V
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Geometric Interpretation of Scalar LMMSE (1/2)

First, we assume that the parameter Θ and the observations Y are zero

mean. If this is not true for your model, since the means are assumed to

be known, you can form a new parameter and observation model as

Θ′ = Θ− E[Θ]

Y ′ = Y − E[Y ]

and proceed from here without loss of generality.

Under this assumption, we know c = 0 for our LMMSE estimator and the

MSE is is only a function of A:

J(A) = E

[

(

A⊤Y −Θ
)2

]

= E
[

ǫ2
]

= var(ǫ)

Under our geometrical interpretation, the MSE is the “length” of the

estimation error. We seek to find the estimator that minimizes this length.
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Geometric Interpretation of Scalar LMMSE (2/2)

Now, since we are concerned here with linear estimators of the form

θ̂(Y ) = A⊤Y

the estimate must be in the subspace spanned by the observations.

Remarks:

◮ If the unknown parameter is also in the subspace spanned by the

observations, we can make the MSE equal to zero.

◮ Usually, the unknown parameter is not in the subspace spanned by

the observations. How can we minimize the “length” of the

estimation error in this case?
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The Principle of Orthogonality: Intuition

subspace spanned

by observations

parameter

LMMSE

estimate

error

“vector”

To minimize the MSE, the estimation error “vector” must be orthogonal

to the subspace spanned by the observations. This means the LMMSE

estimator must satisfy

E {ǫYk} = E
{(

θ̂(Y )−Θ
)

Yk

}

= 0

for all k = 0, . . . , n− 1.
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The Principle of Orthogonality

Theorem

A linear estimator of the scalar parameter Θ is an LMMSE estimator if

and only if

E{θ̂(Y )} = E{Θ}

and

E
{(

θ̂(Y )−Θ
)

Yk

}

= 0

for all k.

This result can be used to directly derive the LMMSE estimator and

provides a geometric way to understand sequential LMMSE estimation. It

is also often handy for solving problems related to LMMSE estimation.
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