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Examples of real-world hypothesis testing problems

◮ To approve a new flu test, the FDA requires the test to have a false

positive rate of no worse than 10% and a detection rate of at least
75%.

◮ After major bicycling races, many riders are tested for the presence of
performance enhancing drugs. The false positive rate of these tests
must be less than x% and the detection rate must be at least y%.

◮ False positives in radar systems: incoming airplane is detected as an
enemy airplane when it is actually friendly. These false positives must
occur with rate less than x%, and the detection rate must be
maximized.

In many hypothesis testing problems, there is a fundamental asymmetry

between the consequences of

◮ “false positive” (decide H1 when the true state is x0) and

◮ “miss / false negative” (decide H0 when the true state is x1).
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Neyman-Pearson Terminology

Neyman-Pearson hypothesis testing is always binary (simple or composite).

H0 : “null” hypothesis or “signal absent”

H1 : “alternative” hypothesis or “signal present”

Common terminology for simple binary hypothesis testing:

◮ A “type I error” is when you decide H1 when the state is x0. Also called a
“false alarm” or “false positive”.

R0(D) = Prob(decide H1|state is x0) = Pfp(D)

◮ A “type II error” is when you decide H0 when the state is x1. Also called a
“miss” or “false negative”.

R1(D) = Prob(decide H0|state is x1) = Pfn(D)

◮ The “power” of a test is the probability of correctly deciding H1 when the
state is x1 or, in other words,

power = Prob(true positive) = 1− Prob(false negative) = PD(D)

The power of the test is also the probability of detecting the signal is present.
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The Neyman-Pearson Criterion

Definition

The Neyman-Pearson criterion decision rule is given as

ρNP = argmax
ρ∈D

PD(ρ)

subject to Pfp(ρ) ≤ α

where α ∈ [0, 1] is called the “significance level” of the test.

This is a “constrained optimization” problem.

Note that maximizing PD is equivalent to minimizing the conditional risk
R1(D).
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Neyman-Pearson Hypothesis Testing Example

Coin flipping problem with a probability of heads of either q0 = 0.5 or
q1 = 0.8. We observe three flips of the coin and count the number of
heads. We can form our conditional probability matrix

P =









0.125 0.008
0.375 0.096
0.375 0.384
0.125 0.512









where Pℓj = Prob(observe ℓ heads|state is xj).

Suppose we need a test with a significance level of α = 0.125.

◮ What is the N-P decision rule in this case?

◮ What is the probability of correct detection if we use this N-P
decision rule?

What happens if we relax the significance level to α = 0.5?
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NP Decision Rule (part 1 of 2)

Main idea: Sort the likelihood ratios Lℓ =
Pℓ,1

Pℓ,0
in descending order. The

order of L’s with the same value doesn’t matter.

So in our three-coin flip problem, we have

Lsorted = [L3, L2, L1, L0]
⊤ = [4.1626, 1.0240, 0.2560, 0.0640]⊤

The Neyman-Pearson decision rule for simple binary hypothesis testing
with discrete observations is then:

ρNP(y) =











1 if Lℓ > v

γ if Lℓ = v

0 if Lℓ < v

Need to specify the likelihood threshold v and randomization γ...
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NP Decision Rule (part 2 of 2)

The decision threshold v ≥ 0 is the minimum value such that

Pfp =
∑

ℓ:Lℓ>v

Pℓ,0 ≤ α.

Note the strict inequality.

Once you have v, you have a decision rule δv that satisfies the false
positive probability constraint. If this constraint is satisfied with equality,
then γ = 0 and you are done. Otherwise, you need to determine the
randomization coefficient γ ∈ [0, 1]. The false positive probability is

Pfp = (1− γ)Pfp(δ
v) + γPfp(δ

v−ǫ)

Setting this equal to α and solving for γ yields

γ =
α− Pfp(δ

v)

Pfp(δv−ǫ)− Pfp(δv)
=

α−
∑

ℓ:Lℓ>v Pℓ,0
∑

ℓ:Lℓ=v Pℓ,0
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