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Hypothesis Testing with Infinite Observation Spaces

Lots of real-world problems have observation sets with an infinite number of
possibilities. For example:

1. Communications: We transmit a binary symbol s ∈ {s0, s1} and the signal is
received in additive white Gaussian noise

y = s+ w

with w ∼ N (0, σ2). The observation y ∈ R = Y.

2. Drug testing: A test provides values for the level of testosterone and red
blood cell count. The observation y ∈ R

2 = Y.
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possibilities. For example:

1. Communications: We transmit a binary symbol s ∈ {s0, s1} and the signal is
received in additive white Gaussian noise

y = s+ w

with w ∼ N (0, σ2). The observation y ∈ R = Y.

2. Drug testing: A test provides values for the level of testosterone and red
blood cell count. The observation y ∈ R

2 = Y.

In the case of finite observation spaces, we previously developed the concept of
conditional risk vectors R(D) = [R0(D), . . . , RN−1(D)]⊤ with

Rj(D) = c⊤j tj = c⊤j Dpj (finite observation spaces)

We will now extend this concept to infinite observation spaces.
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Model Summary

H0

H1

states observations hypotheses

decision rulepx(y)
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Infinite Observation Sets: General Notation

We can generalize our insight from the finite observation space as follows:

1. We denote ρi(y) ∈ [0, 1] as the probability of deciding Hi when the
observation is y.

2. Our randomized decision rule is denoted as
ρ(y) = [ρ0(y), . . . , ρM−1(y)]

⊤ : Y 7→ PM where PM ⊂ R
M is the set

of pmfs on Z. We still use D to denote the set of all possible
random/deterministic decision rules ρ ∈ D.
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1. We denote ρi(y) ∈ [0, 1] as the probability of deciding Hi when the
observation is y.

2. Our randomized decision rule is denoted as
ρ(y) = [ρ0(y), . . . , ρM−1(y)]

⊤ : Y 7→ PM where PM ⊂ R
M is the set

of pmfs on Z. We still use D to denote the set of all possible
random/deterministic decision rules ρ ∈ D.

3. The cost of deciding Hi when the state is xj is still denoted as Cij.
Hence, when we start in state xj and receive the observation y, the
cost of using decision rule ρ(y) is

Cj(ρ(y)) =
M−1
∑

i=0

ρi(y)Cij = c⊤j ρ(y)
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Infinite Observation Sets: Conditional Risks

To compute the conditional risk, we must average the cost over the
observations (fixing state xj). The conditional risk for state xj is then

Rj(ρ) =

∫

y∈Y

Cj(ρ(y))pj(y) dy =

∫

y∈Y

[

M−1
∑

i=0

ρi(y)Cij

]

pj(y) dy

where pj(y) is the known conditional density that probabilistically
describes the relationship between state xj and the observations.

As before, we can group these individual conditional risks into a
conditional risk vector R(ρ) = [R0(ρ), . . . , RN−1(ρ)]

⊤ ∈ R
N .
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Infinite Observation Sets: Achievable CRVs

If we let the decision rule ρ range over all of D, R(ρ) traces out the set Q
of achievable conditional risk vectors in R

N .

Theorem

Q is a closed and bounded convex subset of R
N
.
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Infinite Observation Sets: Achievable CRVs

If we let the decision rule ρ range over all of D, R(ρ) traces out the set Q
of achievable conditional risk vectors in R

N .

Theorem

Q is a closed and bounded convex subset of R
N
.

Key point: The concepts of Pareto optimal decision rules and the
optimal tradeoff surface of Q also apply to the case of infinite Y.

Note that Q is probably not a polytope anymore.
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Summary of Main Results

Conditional risks as a way of quantifying the performance/consequences
of a decision rule when the state is xj:

Rj(D) = c⊤j Dpj (finite observation spaces)

Rj(ρ) =

∫

y∈Y

[

M−1
∑

i=0

ρi(y)Cij

]

pj(y) dy (infinite observation spaces)
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∫

y∈Y
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∑
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]
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The conditional risks for finite and infinite Y are conceptually similar:

◮ Both are an inner product of the cost-weighted decision rule and the
conditional observation probabilities

◮ Both yield a set of achievable CRVs that is closed, bounded, and
convex

◮ Convexity implies that minimizing all conditional risks simultaneously
is impossible. The conditional risks must be traded off against each
other on the optimal tradeoff surface.
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