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Neyman Pearson Hypothesis Testing: Finite/Infinite Obs.

Finite number of possible observations:

◮ Compute the likelihood ratios

Lℓ =
Pℓ,1

Pℓ,0

◮ Pick the threshold v to be the

smallest value such that

Pfp =
∑

ℓ:Lℓ>v

Pℓ,0 ≤ α

◮ If Pfp(δ
v) < α, compute the

randomization γ so that Pfp = α.

◮ The N-P decision rule is then

ρ
NP(yℓ) =











1 Lℓ > v

γ Lℓ = v

0 Lℓ < v
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◮ The N-P decision rule is then

ρ
NP(yℓ) =
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


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1 Lℓ > v

γ Lℓ = v

0 Lℓ < v

Infinite number of possible observations:

◮ Compute the likelihood ratios

L(y) =
p1(y)

p0(y)

◮ Pick the threshold v to be the

smallest value such that

Pfp =

∫

y:L(y)>v

p0(y) dy ≤ α

◮ If Pfp(δ
v) < α, compute the

randomization γ so that Pfp = α.

◮ The N-P decision rule is then

ρ
NP(y) =











1 if L(y) > v

γ if L(y) = v

0 if L(y) < v
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Example: Coherent Detection of BPSK

Suppose a transmitter sends one of two scalar signals a0 or a1 and the
signal arrives at a receiver corrupted by zero-mean additive white Gaussian
noise (AWGN) with variance σ2.
Suppose we have a scalar observation. Signal model when xj = aj :

Y = aj + η

where aj is the scalar signal and η ∼ N (0, σ2). Hence

pj(y) =
1√
2πσ

exp

(−(y − aj)
2

2σ2

)
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Example: Coherent Detection of BPSK

Suppose a transmitter sends one of two scalar signals a0 or a1 and the
signal arrives at a receiver corrupted by zero-mean additive white Gaussian
noise (AWGN) with variance σ2.
Suppose we have a scalar observation. Signal model when xj = aj :

Y = aj + η

where aj is the scalar signal and η ∼ N (0, σ2). Hence

pj(y) =
1√
2πσ

exp

(−(y − aj)
2

2σ2

)

We want to use N-P hypothesis testing to maximize

PD = Prob(decide H1 | a1 was sent)

subject to the constraint

Pfp = Prob(decide H1 | a0 was sent) ≤ α.
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Example: Coherent Detection of BPSK

The N-P decision rule will be of the form

ρNP(y) =











1 if L(y) > v

γ if L(y) = v

0 if L(y) < v

where v ≥ 0 and 0 ≤ γ(y) ≤ 1 are such that Pfp(ρ
NP) = α.
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Example: Coherent Detection of BPSK

The N-P decision rule will be of the form

ρNP(y) =











1 if L(y) > v

γ if L(y) = v

0 if L(y) < v

where v ≥ 0 and 0 ≤ γ(y) ≤ 1 are such that Pfp(ρ
NP) = α.

We need to find the smallest v such that
∫

Yv

p0(y) dy ≤ α

where Yv = {y ∈ Y : L(y) > v}.
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Example: Likelihood Ratio for a0 = 0, a1 = 1, σ2
= 1
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Example: Coherent Detection of BPSK

Note that, since a1 > a0, the likelihood ratio L(y) = p1(y)
p0(y)

is
monotonically increasing. This means that finding v is equivalent to
finding a threshold τ so that
∫ ∞

τ

p0(y) dy ≤ α ⇔ Q

(

τ − a0

σ

)

≤ α ⇔ τ ≥ σQ−1(α) + a0

Ȳv Yv

a0 a1
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Note that, since a1 > a0, the likelihood ratio L(y) = p1(y)
p0(y)

is
monotonically increasing. This means that finding v is equivalent to
finding a threshold τ so that
∫ ∞

τ

p0(y) dy ≤ α ⇔ Q

(

τ − a0

σ

)

≤ α ⇔ τ ≥ σQ−1(α) + a0

Ȳv Yv

a0 a1

The N-P decision rule is then

ρNP(y) =

{

1 if y ≥ σQ−1(α) + a0

0 if y < σQ−1(α) + a0

and PD =
∫∞

σQ−1(α)+a0
p1(y) dy.
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Final Comments on Neyman-Pearson Hypothesis Testing

1. N-P decision rules are useful in asymmetric risk scenarios or in
scenarios where one has to guarantee a certain probability of false
detection.

2. N-P decision rules are always based on simple likelihood ratio
comparisons. The comparison threshold is chosen to satisfy the
significance level constraint.

3. Randomization may be necessary for N-P decision rules. Without
randomization, the power of the test may not be maximized for the
significance level constraint.

4. The original N-P paper: “On the Problem of the Most Efficient Tests
of Statistical Hypotheses,” J. Neyman and E.S. Pearson,
Philosophical Transactions of the Royal Society of London, Series A,

Containing Papers of a Mathematical or Physical Character, Vol. 231
(1933), pp. 289-337. Available on jstor.org.
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