
ECE531 Screencast 9.5: Bayesian Detection Special Cases

ECE531 Screencast 9.5: Bayesian Detection

Interpretation and Special Cases

D. Richard Brown III

Worcester Polytechnic Institute

Worcester Polytechnic Institute D. Richard Brown III 1 / 9



ECE531 Screencast 9.5: Bayesian Detection Special Cases

Prior and Posterior Probabilities

The conditional probability that we are in state xj given the observation y:

πj(y) := Prob(X = xj |Y = y) =
pj(y)πj
p(y)

where

p(y) =

N−1
∑

j=0

πjpj(y).

◮ Recall that πj is the prior probability of state xj, before we have any
observations.

◮ The quantity πj(y) is the posterior probability of state xj,
conditioned on the observation y.

Worcester Polytechnic Institute D. Richard Brown III 2 / 9



ECE531 Screencast 9.5: Bayesian Detection Special Cases

A Bayes Decision Rule Minimizes The Posterior Cost

Deterministic Bayes decision rule (infinite observation space):

δBπ(y) = arg min
i∈{0,...,M−1}

N−1
∑

j=0

πjCijpj(y)

But πjpj(y) = πj(y)p(y), hence

δBπ(y) = arg min
i∈{0,...,M−1}

N−1
∑

j=0

Cijπj(y)p(y)

= arg min
i∈{0,...,M−1}

N−1
∑

j=0

Cijπj(y)

since p(y) does not affect the minimizer.
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Cijπj(y)p(y)

= arg min
i∈{0,...,M−1}

N−1
∑

j=0

Cijπj(y)

since p(y) does not affect the minimizer. Interpretation:
∑N−1

j=0 Cijπj(y)
the average cost of choosing hypothesis Hi given Y = y, i.e. the posterior

cost of choosing Hi. The Bayes decision rule chooses the hypothesis that
yields the minimum expected posterior cost.
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Bayesian Hypothesis Testing with UCA: Part 1

The uniform cost assignment (UCA):

Cij =

{

0 if xj ∈ Hi

1 otherwise

The conditional risk Rj(ρ) under the UCA is simply the probability of not
choosing the hypothesis that contains xj , i.e. the probability of error when
the state is xj . The Bayes risk in this case is

r(ρ, π) =
N−1
∑

j=0

πjRj(ρ) = Prob(error).
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Bayesian Hypothesis Testing with UCA: Part 2

Under the UCA, a Bayes decision rule can be written in terms of the
posterior probabilities as

δBπ(y) = arg min
i∈{0,...,M−1}

N−1
∑

j=0

Cijπj(y)

= arg min
i∈{0,...,M−1}

∑

xj /∈Hi

πj(y)

= arg min
i∈{0,...,M−1}



1−
∑

xj∈Hi

πj(y)





= arg max
i∈{0,...,M−1}

∑

xj∈Hi

πj(y)
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Under the UCA, a Bayes decision rule can be written in terms of the
posterior probabilities as

δBπ(y) = arg min
i∈{0,...,M−1}

N−1
∑
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Cijπj(y)

= arg min
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



= arg max
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∑

xj∈Hi

πj(y)

Hence, for hypothesis tests under the UCA, the Bayes decision rule is the
MAP (maximum a posteriori) decision rule. When the hypothesis test is
simple, δBπ(y) = argmaxi πi(y).
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Bayesian Hypothesis Testing with UCA and Uniform Prior

Under the UCA and a uniform prior, i.e. πj = 1/N for all j = 0, . . . , N − 1

δBπ(y) = arg max
i∈{0,...,M−1}

∑

xj∈Hi

πj(y)

= arg max
i∈{0,...,M−1}

∑

xj∈Hi

πjpj(y)

= arg max
i∈{0,...,M−1}

∑

xj∈Hi

pj(y)

since πj = 1/N does not affect the minimizer.

◮ In this case, δBπ(y) selects the most likely hypothesis, i.e. the
hypothesis which best explains the observation y.

◮ This is called the maximum likelihood (ML) decision rule.
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Simple Binary Bayesian Hypothesis Testing: Part 1

We have two states x0 and x1 and two hypotheses H0 and H1. For each
y ∈ Y, our problem is to compute

m(y) = arg min
i∈{0,1}

gi(y, π)

for each y ∈ Y where

g0(y, π) = π0C00p0(y) + π1C01p1(y)

g1(y, π) = π0C10p0(y) + π1C11p1(y)

We only have two things to compare. We can simplify this comparison:

g0(y, π) ≥ g1(y, π) ⇔ π0C00p0(y) + π1C01p1(y) ≥ π0C10p0(y) + π1C11p1(y)

⇔ p1(y)π1(C01 − C11) ≥ p0(y)π0(C10 − C00)

⇔
p1(y)

p0(y)
≥

π0(C10 − C00)

π1(C01 − C11)

where we have assumed that C01 > C11 to get the final result.
The expression L(y) := p1(y)

p0(y)
is known as the likelihood ratio.
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Simple Binary Bayesian Hypothesis Testing: Part 2

Given L(y) := p1(y)
p0(y)

and

τ :=
π0(C10 − C00)

π1(C01 − C11)
,

the Bayes decision rule for simple binary hypothesis testing is then simply

δBπ(y) =











1 if L(y) > τ

0/1 if L(y) = τ

0 if L(y) < τ.

Remark:

◮ For any y ∈ Y that result in L(y) = τ , the Bayes risk is the same
whether we decide H0 or H1. You can deal with this by always
deciding H0 in this case, or always deciding H1, or flipping a coin, etc.
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Simple Binary Bayesian Hypothesis Testing with UCA

Uniform cost assignment:

C00 = C11 = 0

C01 = C10 = 1

In this case, the discriminant functions are simply

g0(y, π) = π1p1(y) = π1(y)p(y)

g1(y, π) = π0p0(y) = π0(y)p(y)

and a Bayes decision rule can be written in terms of the posterior
probabilities as

δBπ(y) =











1 if π1(y) > π0(y)

0/1 if π1(y) = π0(y)

0 if π1(y) < π0(y).

In this case, it should be clear that the Bayes decision rule is the MAP
(maximum a posteriori) decision rule.
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