ECE531 Screencast 9.5: Bayesian Detection Interpretation and Special Cases

D. Richard Brown III

Worcester Polytechnic Institute

Prior and Posterior Probabilities

The conditional probability that we are in state x_j given the observation y:

$$\pi_j(y) := \text{Prob}(X = x_j | Y = y) = \frac{p_j(y)\pi_j}{p(y)}$$

where

$$p(y) = \sum_{j=0}^{N-1} \pi_j p_j(y).$$

- ▶ Recall that π_j is the **prior** probability of state x_j , before we have any observations.
- ▶ The quantity $\pi_j(y)$ is the **posterior** probability of state x_j , conditioned on the observation y.

A Bayes Decision Rule Minimizes The Posterior Cost

Deterministic Bayes decision rule (infinite observation space):

$$\delta^{B\pi}(y) = \arg\min_{i \in \{0,\dots,M-1\}} \sum_{j=0}^{N-1} \pi_j C_{ij} p_j(y)$$

But $\pi_j p_j(y) = \pi_j(y) p(y)$, hence

$$\delta^{B\pi}(y) = \arg\min_{i \in \{0,\dots,M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y) p(y)$$
$$= \arg\min_{i \in \{0,\dots,M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y)$$

since p(y) does not affect the minimizer.

A Bayes Decision Rule Minimizes The Posterior Cost

Deterministic Bayes decision rule (infinite observation space):

$$\delta^{B\pi}(y) = \arg\min_{i \in \{0,\dots,M-1\}} \sum_{j=0}^{N-1} \pi_j C_{ij} p_j(y)$$

But $\pi_j p_j(y) = \pi_j(y) p(y)$, hence

$$\delta^{B\pi}(y) = \arg \min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y) p(y)$$
$$= \arg \min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y)$$

since p(y) does not affect the minimizer. Interpretation: $\sum_{j=0}^{N-1} C_{ij} \pi_j(y)$ the average cost of choosing hypothesis \mathcal{H}_i given Y=y, i.e. the **posterior** cost of choosing \mathcal{H}_i . The Bayes decision rule chooses the hypothesis that yields the minimum expected posterior cost.

Bayesian Hypothesis Testing with UCA: Part 1

The uniform cost assignment (UCA):

$$C_{ij} = \begin{cases} 0 & \text{if } x_j \in \mathcal{H}_i \\ 1 & \text{otherwise} \end{cases}$$

The conditional risk $R_j(\rho)$ under the UCA is simply the probability of not choosing the hypothesis that contains x_j , i.e. the probability of error when the state is x_j . The Bayes risk in this case is

$$r(\rho,\pi) \ = \ \sum_{j=0}^{N-1} \pi_j R_j(\rho) = \operatorname{Prob}(\mathsf{error}).$$

Bayesian Hypothesis Testing with UCA: Part 2

Under the UCA, a Bayes decision rule can be written in terms of the posterior probabilities as

$$\delta^{B\pi}(y) = \arg \min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y)$$

$$= \arg \min_{i \in \{0, \dots, M-1\}} \sum_{x_j \notin \mathcal{H}_i} \pi_j(y)$$

$$= \arg \min_{i \in \{0, \dots, M-1\}} \left[1 - \sum_{x_j \in \mathcal{H}_i} \pi_j(y) \right]$$

$$= \arg \max_{i \in \{0, \dots, M-1\}} \sum_{x_i \in \mathcal{H}_i} \pi_j(y)$$

Bayesian Hypothesis Testing with UCA: Part 2

Under the UCA, a Bayes decision rule can be written in terms of the posterior probabilities as

$$\delta^{B\pi}(y) = \arg \min_{i \in \{0, \dots, M-1\}} \sum_{j=0}^{N-1} C_{ij} \pi_j(y)$$

$$= \arg \min_{i \in \{0, \dots, M-1\}} \sum_{x_j \notin \mathcal{H}_i} \pi_j(y)$$

$$= \arg \min_{i \in \{0, \dots, M-1\}} \left[1 - \sum_{x_j \in \mathcal{H}_i} \pi_j(y) \right]$$

$$= \arg \max_{i \in \{0, \dots, M-1\}} \sum_{x_i \in \mathcal{H}_i} \pi_j(y)$$

Hence, for hypothesis tests under the UCA, the Bayes decision rule is the MAP (maximum a posteriori) decision rule. When the hypothesis test is simple, $\delta^{B\pi}(y) = \arg\max_i \pi_i(y)$.

Bayesian Hypothesis Testing with UCA and Uniform Prior

Under the UCA and a uniform prior, i.e. $\pi_j = 1/N$ for all $j = 0, \dots, N-1$

$$\begin{split} \delta^{B\pi}(y) &= & \arg\max_{i \in \{0,\dots,M-1\}} \sum_{x_j \in \mathcal{H}_i} \pi_j(y) \\ &= & \arg\max_{i \in \{0,\dots,M-1\}} \sum_{x_j \in \mathcal{H}_i} \pi_j p_j(y) \\ &= & \arg\max_{i \in \{0,\dots,M-1\}} \sum_{x_j \in \mathcal{H}_i} p_j(y) \end{split}$$

since $\pi_j = 1/N$ does not affect the minimizer.

- ▶ In this case, $\delta^{B\pi}(y)$ selects the **most likely** hypothesis, i.e. the hypothesis which best explains the observation y.
- ▶ This is called the **maximum likelihood** (ML) decision rule.

Simple Binary Bayesian Hypothesis Testing: Part 1

We have two states x_0 and x_1 and two hypotheses \mathcal{H}_0 and \mathcal{H}_1 . For each $y \in \mathcal{Y}$, our problem is to compute

$$m(y) = \arg\min_{i \in \{0,1\}} g_i(y, \pi)$$

for each $y \in \mathcal{Y}$ where

$$g_0(y,\pi) = \pi_0 C_{00} p_0(y) + \pi_1 C_{01} p_1(y)$$

$$g_1(y,\pi) = \pi_0 C_{10} p_0(y) + \pi_1 C_{11} p_1(y)$$

We only have two things to compare. We can simplify this comparison:

$$g_{0}(y,\pi) \geq g_{1}(y,\pi) \quad \Leftrightarrow \quad \pi_{0}C_{00}p_{0}(y) + \pi_{1}C_{01}p_{1}(y) \geq \pi_{0}C_{10}p_{0}(y) + \pi_{1}C_{11}p_{1}(y)$$

$$\Leftrightarrow \quad p_{1}(y)\pi_{1}(C_{01} - C_{11}) \geq p_{0}(y)\pi_{0}(C_{10} - C_{00})$$

$$\Leftrightarrow \quad \frac{p_{1}(y)}{p_{0}(y)} \geq \frac{\pi_{0}(C_{10} - C_{00})}{\pi_{1}(C_{01} - C_{11})}$$

where we have assumed that $C_{01} > C_{11}$ to get the final result. The expression $L(y) := \frac{p_1(y)}{p_0(y)}$ is known as the **likelihood ratio**.

Simple Binary Bayesian Hypothesis Testing: Part 2

Given
$$L(y) := \frac{p_1(y)}{p_0(y)}$$
 and

$$\tau := \frac{\pi_0(C_{10} - C_{00})}{\pi_1(C_{01} - C_{11})},$$

the Bayes decision rule for simple binary hypothesis testing is then simply

$$\delta^{B\pi}(y) = \begin{cases} 1 & \text{if } L(y) > \tau \\ 0/1 & \text{if } L(y) = \tau \\ 0 & \text{if } L(y) < \tau. \end{cases}$$

Remark:

For any $y \in \mathcal{Y}$ that result in $L(y) = \tau$, the Bayes risk is the same whether we decide \mathcal{H}_0 or \mathcal{H}_1 . You can deal with this by always deciding \mathcal{H}_0 in this case, or always deciding \mathcal{H}_1 , or flipping a coin, etc.

Simple Binary Bayesian Hypothesis Testing with UCA

Uniform cost assignment:

$$C_{00} = C_{11} = 0$$

 $C_{01} = C_{10} = 1$

In this case, the discriminant functions are simply

$$g_0(y,\pi) = \pi_1 p_1(y) = \pi_1(y) p(y)$$

 $g_1(y,\pi) = \pi_0 p_0(y) = \pi_0(y) p(y)$

and a Bayes decision rule can be written in terms of the posterior probabilities as

$$\delta^{B\pi}(y) = \begin{cases} 1 & \text{if } \pi_1(y) > \pi_0(y) \\ 0/1 & \text{if } \pi_1(y) = \pi_0(y) \\ 0 & \text{if } \pi_1(y) < \pi_0(y). \end{cases}$$

In this case, it should be clear that the Bayes decision rule is the MAP (maximum a posteriori) decision rule.