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Prior and Posterior Probabilities

The conditional probability that we are in state ; given the observation y:

() = Prob(X — 2. |V — o) = P
mj(y) := Prob(X Y =y) o(0)
where
N-1
py) = 75 (y)
§=0

> Recall that 7; is the prior probability of state x;, before we have any
observations.

» The quantity 7;(y) is the posterior probability of state z;,
conditioned on the observation y.
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A Bayes Decision Rule Minimizes The Posterior Cost

Deterministic Bayes decision rule (infinite observation space):

5B = ar min :C;
() B o™y, Z iiPi (y

But 7;p;(y) = m;(y)p(y), hence

5B7r — CZ
W) = g, min_ 1}2 i

= arg min g CZ]TF]
26{0, M- 1}

since p(y) does not affect the minimizer.
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A Bayes Decision Rule Minimizes The Posterior Cost

Deterministic Bayes decision rule (infinite observation space):

5B = ar min :C;
() B o™y, Z iiPi (y

But 7;p;(y) = m;(y)p(y), hence

5B7r — CZ
W) = g, min_ 1}2 i

= arg min g CZ]TF]
26{0, M- 1}

since p(y) does not affect the minimizer. Interpretation: Z;.V:_Ol Cijmi(y)
the average cost of choosing hypothesis H; given Y = y, i.e. the posterior
cost of choosing H;. The Bayes decision rule chooses the hypothesis that
yields the minimum expected posterior cost.
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Bayesian Hypothesis Testing with UCA: Part 1

The uniform cost assignment (UCA):

0 if T € H;
Cij = )
1 otherwise

The conditional risk R;(p) under the UCA is simply the probability of not
choosing the hypothesis that contains x;, i.e. the probability of error when
the state is ;. The Bayes risk in this case is

=

r(p,m) = mjR;(p) = Prob(error).

<.
Il
=)
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Bayesian Hypothesis Testing with UCA: Part 2

Under the UCA, a Bayes decision rule can be written in terms of the
posterior probabilities as

6B (y) = arg ZE{OmIII\l/I 1}202]773

= arg min Z 7 (y)

€{0,...,M—1
ief )

argz‘e{o,r.r.l.,ljl\lxj_l} Z m;i(y)

= arg max Z mi(y)

ZE{O""’M_I}meH-
J 7
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Bayesian Hypothesis Testing with UCA: Part 2

Under the UCA, a Bayes decision rule can be written in terms of the
posterior probabilities as

65" (y) = arg min ZCZ]TFJ

7,6{07 M — l}
= g min Z ™ ()

ziEH;

= arg min 1-— Z mi(y)

i€{0,...,M—1} =)
= ar max o
giE{O,...,M—l} Z i)

T €EH;

Hence, for hypothesis tests under the UCA, the Bayes decision rule is the
MAP (maximum a posteriori) decision rule. When the hypothesis test is
simple, 657 (y) = arg max; m;(y).

Worcester Polytechnic Institute D. Richard Brown Il 5/9



ECES531 Screencast 9.5: Bayesian Detection Special Cases

Bayesian Hypothesis Testing with UCA and Uniform Prior

Under the UCA and a uniform prior, i.e. m; = 1/N forall j =0,...,N —1

5B = ar max e
(y) gie{owM_l}x;i i(v)

= ar max T
I N B0

T;€EH;

= arg max Z pi(y)
i€{0,...,M—1} v

since m; = 1/N does not affect the minimizer.

> In this case, 6%™(y) selects the most likely hypothesis, i.e. the
hypothesis which best explains the observation y.

» This is called the maximum likelihood (ML) decision rule.
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Simple Binary Bayesian Hypothesis Testing: Part 1

We have two states xy and x; and two hypotheses gy and H1. For each
y € ), our problem is to compute

m(y) = arg min g;(y, )

1€{0,1

for each y € ) where

go(y,m) = mCoopo(y) + mCor1p1(y)
g1(y;m) = mCropo(y) + mCrip1(y)
We only have two things to compare. We can simplify this comparison:

go(y,m) = g1(y, ™) <  m0Coopo(y) + m1Co1p1(y) = moCropo(y) + m1Cr1p1(y)
< pi(y)m(Cor — C11) 2 po(y)mo(Cro — Coo)

pi(y) - 7m0(Cro = Coo)

po(y) — m(Cor — C11)

where we have assumed that Cy; > C7; to get the final result.

The expression L(y) := i;gzg is known as the likelihood ratio.
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Simple Binary Bayesian Hypothesis Testing: Part 2

Given L(y) := &) and

70(C1o0 — Coo)
m(Co1 — C11)’

the Bayes decision rule for simple binary hypothesis testing is then simply

1 if L(y) >
577 (y) = d 0/1 if L(y) =T
0 if L(y) <.

Remark:

» For any y € ) that result in L(y) = 7, the Bayes risk is the same
whether we decide Hg or 1. You can deal with this by always
deciding H in this case, or always deciding H1, or flipping a coin, etc.
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Simple Binary Bayesian Hypothesis Testing with UCA

Uniform cost assignment:

Coo=C11=0
Coi=Cp=1
In this case, the discriminant functions are simply
go(y,m) = mpi(y) = m(y)p(y)
g1(y,™) = mopo(y) = mo(y)p(y)

and a Bayes decision rule can be written in terms of the posterior
probabilities as

L ifm(y) > mo(y)
5P (y) =< 0/1 if m(y) = mo(y)
0 ifm(y) <mo(y)

In this case, it should be clear that the Bayes decision rule is the MAP
(maximum a posteriori) decision rule.
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