ECE531 Spring 2013 Quiz 10

Your Name: SOLUTION

Instructions: This quiz is worth a total of 100 points. The quiz is open book and open notes. You may also use a calculator. You may not use a computer, phone, or tablet. Please show your work on each problem and box/circle your final answers. Points may be deducted for a disorderly presentation of your solution.

Suppose you have a communication system with two signals given as

$$s_0 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1\\1 \end{bmatrix}$$
$$s_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix}$$

and these signals are observed as

$$Y = s_i + W$$

for $i \in \{0,1\}$, depending on which signal was transmitted, with $W \sim \mathcal{N}(0,\Sigma)$ and

$$\Sigma = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}.$$
 Noise is uncorrelated but not i.i.d.

- 1. 50 points. Assuming equal prior probabilities, determine the minimum probability of error decision rule and the resulting error probability.
- 2. 50 points. Redesign the signals s_0 and s_1 so that the error probability is minimized subject to the constraint $||s_0||^2 = ||s_1||^2 = 1$. Are s_0 and s_1 uniquely determined? Compute the resulting error probability.

1. Equal priors,
$$u(A) \Rightarrow Minimum distance detector$$

clearly the decision depends only on yo and not y,

$$SBrt(y) = \begin{cases} 0 & y_0 > 0 \\ 0 & y_0 < 0 \end{cases}$$

$$Pe = \frac{1}{2} Prob(y_0 > 0) S_0 sent) + \frac{1}{2} Prob(y_0 < 0) S_1 sent) = Q(\frac{1}{2})$$

$$= Q(\frac{1}{2\sqrt{2}})$$

2. We want 50 and 5. to be antipodal on the y, axis since the noise variance is minimal on
$$y_{\pm}$$
. We can use $s_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $s_1 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ In this case, $P_0 = \frac{1}{2} Prob |y_1 > 0| s$, sent) $+ \frac{1}{2} Prob |y_1 < 0| s$ sent)

Which is better than $Q(\frac{1}{2\sqrt{2}})$ 1

These signals are using usely determined, but can be flipped.

-10 s_1