DMIMO project: history, overview and a brief progress report

Raghu Mudumbai Electrical & Computer Engineering The University of Iowa

Outline

genesis of this project
 a brief personal history

other DMIMO-related work – a quick survey

- project goals
 - fundamentals, scalable algorithms

experimental prototypes

Outline

<u>genesis of this project</u>
 <u>a brief personal history</u>

Formal project details

Title: "Distributed coherence: fundamental building blocks, system concepts and experimental prototypes"

Sponsor: NSF

Dates: June 2013 – May 2016

Institutions: Iowa, WPI and UCSB

Personnel

- Pls: Brown, Dasgupta, Madhow & Mudumbai Students:
- Amy Kumar
- Ben Peiffer
- Faruk Gencel
- Radu David
- Rui Wang

Post-doc:

Maryam Rasekh

A timeline

precursors and prehistories
 pre-2000

- distributed transmit beamforming
 - ~2002
 - CoMP, PrEW
- a surge of recent activity
 - ~2009
 - "Mega-MIMO", "AirSync", "pCell"

DMIMO in the olden days

- Radio-astronomy
 VLA (New Mexico)
- Synthetic aperture radar

Distributed arrays in theory

- Cooperative diversity
 - [Erkip et al, 1998]
- Network coding

. . .

Multi-user info theory

Baseband model → implicit assumption of perfect synchronization

The synchronization challenge

Centralized	Distributed	Implication		
All antennas driven by the same RF oscillator	Carrier signals from separate oscillators	Non-zero frequency offsets between nodes, and unknown phase drifts		
Exploit array geometry for beamsteering	No regular array geometry for ad- hoc wireless networks	Need channel feedback for beamsteering		

Distributed transmit beamforming

simplest and easiest DMIMO scheme

Lessons from PrEW

- 1. state-of-the-art in high-end oscillators is shockingly good
 - sufficient to sustain coherent tx for 10s of secs
- 2. oscillator drifts can be effectively predicted and tracked using Kalman filter-like tools
 assuming we avoid phase-unwrapping issues

3. very high-precision time-of-flight estimation with reasonable complexity

achieving the Weiss-Weinstein bound

THE UNIVERSITY OF IOWA

Key takeaway

Synchronization of RF signals for coherent transmission of eminently feasible

Dream bigger!

digi The University of Iowa

Concept of DMIMO

Outline

genesis of this project
 a brief personal history

other DMIMO-related work – a quick survey

Cooperative Multipoint (CoMP)

"Coordinated multipoint: Concepts, performance, and field trial results" *Communications Magazine, IEEE*, vol.49, no.2, pp.102-111, February 2011

"Joint Multiuser Beamforming" aka "MegaMMO"

Rahul, H., S. Kumar, and D. Katabi. "MegaMIMO: scaling wireless capacity with user demands." ACM SIGCOMM. 2012.

"Multi-point to Multi-point MIMO"

Yun, Sangki, Lili Qiu, and Apurv Bhartia. "Multi-point to Multi-point MIMO in Wireless LANs", INFOCOM 2013

Balan, H.V.; Rogalin, R.; Michaloliakos, A.; Psounis, K.; Caire, G., "AirSync: Enabling Distributed Multiuser MIMO With Full Spatial Multiplexing," IEEE/ACM Transactions on Networking

Hierarchical Cooperation

Ayfer Özgür, Olivier Lévêque and David N. C. Tse, "Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks", IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3549-3572, Oct. 2007

PHASE 1	PHASE 2		PHASE 3			
PHASE 1 PHASE 2 PHAS	.3	PHA	ASE 1	PHASE 2	PH/	ASE 3
				1		

20

THE UNIVERSITY OF LOWA

"Distributed input distributed output (DIDO)" aka "pCell"

http://spectrum.ieee.org/telecom/wireless/can-artemis-deliver-5g-serviceon-your-4g-phone

pCell announcement

Three major achievements

 LTE-standard supporting Base-stations with small footprints on stock USRP hardware

 Base-station cooperation without any clientside mods - and apparently with very little backhaul bandwidth

– large-scale spatial mux (in "demos", 8x scaling)

22

"If you've done 6 impossible things this morning, why not round it off with breakfast at Milliways, the Restaurant at the End of the Universe?"

— Douglas Adams, The Restaurant at the End of the Universe

Outline

genesis of this project
 a brief personal history

other DMIMO-related work – a quick survey

- project goals
 - fundamentals, scalable algorithms

The big picture

Fundamentals	Scalable Techniques				
Synchronization/overhead tradeoff State-space models Kalman tracking and prediction Phase/frequency/delay estimation Channel estimation	Summarized feedback Implicit feedback Receive beamforming Wideband extensions Kalman tracking for sync and CSI				
Concept Systems	Experiments				
Distributed base station Distributed 911	Open-source implementation on software defined radio platform Accoustic testbed for advanced virtual array techniques				

25

The University of Iowa

Two key themes

Fully wireless

- we envision DMIMO arrays of "mobiles" rather than of "Base Stations"
- no wired backhaul links
- array coordination overhead cannot be too large

Scalable

 DMIMO gains are most compelling when the array size becomes large

Fundamentals: a fresh look at modeling clock drifts

- we know KF-like methods "work"
 - assuming Brownian motion frequency and phase disturbances
 - using rough estimates of process noise covariances
 - obtained from Allan variances and other metrics that are designed to measure *long-term* stability
 - neglecting the possibility of "cycle slips" or unwrapping errors

Fundamentals: wideband signaling in multi-path channels

- <u>Naïve method</u>: use narrowband signaling independently on each subcarrier
 - highly suboptimal
 - neglects correlations of "effective channel" over subcarriers

 Designing optimal OFDM receiver structures for DMIMO systems

28

Scalable algorithms: reciprocity

29

THE UNIVERSITY OF IOWA

Scalable algorithms: reciprocity

Scalable algorithms: nullforming

- Nullforming using reciprocity?
 - nullforming ← global CSI
 - vs. beamforming

 How about local CSI + some small amount of additional feedback?

Very powerful idea

31

Scalable algorithms: Rx beamforming

 brute-force method: all receive nodes exchange entire waveforms

 optimal, but extremely high backhaul bandwidth requirements

how much can we quantize?

 is there a clever way to aggregate waveforms with low overhead?

32

Outline

genesis of this project
 a brief personal history

other DMIMO-related work – a quick survey

- project goals
 - fundamentals, scalable algorithms

<u>experimental prototypes</u>

Open-source implementation: v1.0

- In our implementation, a dedicated "Master" node sends a pilot tone for "Slaves" to frequency-lock to
- Other arrangements possible
 - e.g. GPS satellite as Master node or Receiver itself as Master node
 - Different tradeoffs

Multiplexing scheme

- Training signal from master at 964 MHz
 - Feedback signal at 964 MHz + 200 kHz

- Far enough apart to be separated by simple filtering
- But close enough to be within slave nodes' receiving bandwidth

The University of Iowa

All the action is at the Slaves

- Two parallel synchronization processes
 - frequency-locking using pilot tone from Master
 - beamsteering using 1-bit feedback from receiver

WED DEC 28 14:14:56 2011

Same experimental data plotted in MATLAB

- 3 transmitters, individually and then together
- amplitude of received signal with beamforming ~ 3x greater → SNR ~ 9x greater

v2.0: more refined and optimized for packet networks

Digital packetized feedback signal

digital feedback in short packet bursts
 minimize power consumption

 use same feedback signal for frequency locking as well as beamforming
 → no need for separate Master node

Very low sync overhead

 Training/feedback sent in short packet bursts

Extended Kalman filters

- EKF performs better than Costas loop more robust, accurate frequency estimation
- EKF more flexible
 - works with digital feedback packet signal

OF IOWA

Beamforming RSS with 3 Tx

digi The University of Iowa

Ongoing work

 a "pre-synchronized" DMIMO array using low-complexity signal processing

 a protocol for initializing and maintaining a pre-synced array with low overhead

using EKFs on packet preambles

