Uplink User-Assisted Distributed Relaying for Cellular Communications

Ahmad Abu Al Haija, Hussain Elkotby, Mai Vu

Electrical and Computer Engineering
Tufts University

18 August 2014
Presentation DMIMO Summit, WPI
Research areas

• Research areas
 – Wireless communications, network communications
 – Signal processing, applied optimization

• Recent topics
 – MIMO precoding and capacity
 – Cognitive radio and cognitive networks
 – Cooperative communications

• Current directions
 – Future cellular systems (4G, 5G)
 – Ad hoc network communications
Students whose work is in this talk

Ahmad Abu Al Haija Hussain ElKotby

Uplink User-Assisted Cooperative Relaying in Cellular Networks
Context

• 2G/3G cellular systems
 – Resource partitioning – connections are single-user links
 – Spectral efficiency per link approaches the theoretical limit

• Future high data rate demands

• 4G solutions
 – Small (femto) cells
 – Multi-cell processing
 – D2D communication

• 5G ideas
 – More small cells (HetNets)
 – mmWave
 – Massive MIMO
 – Smarter devices
Multi-cell Processing / Cooperation

- The BSs are connected via Backhaul networks.

- CoMP:
 - BSs share channel state information (CSI)
 - Perform beamforming and power control
 - Downlink cooperation among BSs

- What about uplink cooperation among UEs?
Hybrid D2D-infrastructure cooperation

- Uplink communications
 - Two close UEs (mobiles) can “hear” each other
 - They can communicate directly (D2D)
 or
 - Exchange their information and perform uplink beamforming (hybrid)
Hybrid D2D-infrastructure cooperation

- Uplink communications
 - Two close UEs (mobiles) can “hear” each other
 - They can communicate directly (D2D)
 - Exchange their information and perform uplink beamforming (hybrid)

Can be applied in small cells / HetNets as well
Comparison among 3 transmission modes

- Half-duplex transmissions
- Consider transmissions on the same frequency band

Resource partitioning (LTE and LTE-A)
- Each UE transmits on a different time slot

Concurrent trans. with SIC
- Both UEs transmit at the same time
- BS performs SIC

Cooperative trans. (TD and D2D)
- Two UEs cooperate to transmit to the BS.
- 3 phase transmission
- Virtual beamforming
- Advance processing
3 transmission modes over a frame

Resource partitioning (LTE and LTE-A)
Concurrent trans. with SIC

Cooperative transmission (TD and D2D)

Phase 1 | Phase 2 | Whole time
Outline for the rest of the talk

• User-assisted cooperative transmission
 – Transmit signal design
 – Decoding techniques
 – Achievable rate region

• Deployment in cellular networks

• Reliability/Outage performance
Channel Model

\[
\begin{align*}
Y_{12} &= h_{12}X_{10} + Z_1 \\
Y_1 &= h_{10}X_{10} + Z_{31} \\
Y_{21} &= h_{21}X_{20} + Z_2 \\
Y_2 &= h_{20}X_{20} + Z_{32} \\
Y_3 &= h_{10}X_{11} + h_{20}X_{22} + Z_{33}
\end{align*}
\]

Rayleigh block fading
\[h_{ij} = g_{ij}e^{\kappa\theta_{ij}}\]

Complex Gaussian noise
\[Z \sim \mathcal{CN}(0, 1)\]
Transmission Scheme
\[w_1 \rightarrow (w_{10}, w_{11}) \quad w_2 \rightarrow (w_{20}, w_{22}) \]
Transmit signal design

Transmit signals

\[X_{10} = \sqrt{\rho_{10}} U_{10}(w_{10}) \quad X_{20} = \sqrt{\rho_{20}} U_{20}(w_{20}) \]

\[X_{11} = \sqrt{\rho_{11}} V_{11}(w_{11}) + \sqrt{\rho_1} S(w_{10}, w_{20}) \]

\[X_{22} = \sqrt{\rho_{22}} V_{22}(w_{22}) + \sqrt{\rho_2} S(w_{10}, w_{20}) \]

Power constraints

\[\alpha_1 \rho_{10} + \alpha_3 (\rho_{11} + \rho_1) \leq P_1, \quad \alpha_2 \rho_{20} + \alpha_3 (\rho_{22} + \rho_2) \leq P_2 \]
Decoding and Rate region

At UE$_2$: $Y_{12} \rightarrow \hat{w}_{10}$

At UE$_2$: $Y_{21} \rightarrow \hat{w}_{20}$

At BS: $(Y_1, Y_2, Y_3) \rightarrow (\hat{w}_1, \hat{w}_2)$

\[
R_{12} \leq \alpha_1 C \left(g_{12}^2 \rho_{10} \right) = J_1
\]

\[
R_{21} \leq \alpha_1 C \left(g_{21}^2 \rho_{20} \right) = J_2
\]

\[
R_{11} \leq \alpha_3 C \left(g_{10}^2 \rho_{11} \right) = J_3,
\]

\[
R_{22} \leq \alpha_3 C \left(g_{20}^2 \rho_{22} \right) = J_4,
\]

\[
R_{11} + R_{22} \leq \alpha_3 C \left(R_1 + R_2 \leq J_1 + J_3, \right) \quad R_2 \leq J_2 + J_4
\]

\[
R_1 + R_{22} \leq \alpha_1 C \left(R_1 + R_2 \leq J_1 + J_2 + J_5, \quad R_1 + R_2 \leq J_8 \right)
\]

\[
R_1 + R_2 \leq \alpha_1 C \left(g_{10}^2 \rho_{11} \right) + \alpha_2 C \left(g_{20}^2 \rho_{20} \right) + \alpha_3 \zeta = J_8, \quad \zeta = C \left(g_{10}^2 \rho_{11} + g_{20}^2 \rho_{22} + (g_{10} \sqrt{\rho_1} + g_{20} \sqrt{\rho_2})^2 \right).
\]
Achievable Rate Region

\[\mu_{10} = 4, \mu_{20} = 1, \mu_{12} = \mu_{21} = 16 \]

Proposed TD Coop. Trans.
- Concurrent trans. with SIC
- RP with Orthogonal Trans. (LTE)
- Outer bound

\[\mu_{ij} = E[g_{ij}^2] \]

Talk Outline

• User-assisted cooperative transmission

• Deployment in cellular networks
 – Deployment policy
 – Out-of-cell interference
 – Throughput performance gain

• Reliability/Outage performance
Deployment in Cellular Networks

- Deployment of user-assisted relaying
 - An idle user helps relay data of an active user
- Study **network-wide impact** of user-assisted relaying
 - On throughput, outage, coverage

![Diagram of cellular network with relaying links](image-url)
Stochastic Geometry Model

- Factors to consider:
 - When should a user cooperate?
 - What is the effect on network interference and overall performance?
- Performance evaluation:
 - Analysis using stochastic geometry tools
 - Verify analysis with simulation
Consider a multi-cell system

- Each cell has a single base station
- Reuse factor 1 in the whole network
- An active user can relay through the closest idle user
Channel Model & Relaying Scheme

T: Transmission Time

$\alpha_1, \alpha_2 \in [0, 1], \alpha_1 + \alpha_2 = 1$

- User-assisted relaying:
 - Two phase transmission scheme
 - Flat fading over the two phase period
- **Active user (source S):** uses superposition coding
- **Relay user (relay R):** transmit coherently with the source in 2nd phase
- **Base station (destination D):** utilizes received signals in both phases to decode the message
Network Geometric Model

- We use stochastic geometry to model the network
- Active UEs as a PPP with density λ_1
- Idle UEs as a PPP with density λ_2
Cooperation Policies

• Ideal policy (E_1):
 • Perfect knowledge of source channel state information
 • Perfect knowledge of the interference

$$E_1 \simeq \left\{ \frac{g_{sr} r_2^{-\alpha}}{T_r^2} \geq \frac{g_{sd} r_1^{-\alpha}}{T_d^2} \right\}.$$

• Pure geometric policy (E_2):
 • Only knows the distances
 • Practical for fast fading channels

$$E_2 = \{ r_1 \geq r_2, D \leq r_1 \}.$$

• Hybrid fading and geometric policy (E_3):
 • Knows both small and large scale fading but not the interference
 • Applicable for slow fading channels

$$E_3 = \{ g_{sd} r_1^{-\alpha} \leq g_{sr} r_2^{-\alpha}, D \leq r_1 \}.$$
Cooperation Probability

![Graph showing Cooperation Probability vs \(\frac{\lambda_2}{\lambda_1} \)]
Interference Model

• We need to characterize the interference at
 – Relay user during 1\(^{st}\) phase
 – Base station during 1\(^{st}\) phase
 – Base station during 2\(^{nd}\) phase
• Stochastic geometry and PPP
 – Can provide analytic expression for moments
 – Fails to provide the exact distribution
• Consider a Gamma distribution model
 – Fit the first two moments of interference distribution
 – Approximately fit empirical data
Fit of Gamma Distribution
Interference Model: Effect of Gamma Distribution

![Graph showing the effect of transmission power on average rate for different distances and models.](image)
Throughput vs. Distance to Relay

![Graph showing throughput vs. distance to relay](image-url)
Data rate gain vs. active user location
Average data rate gain vs. idle to active ratio

Talk Outline

- User-assisted cooperative transmission
- Deployment in cellular networks
- Reliability/Outage performance
 - Outage at the UEs and BS
 - Common outage
 - Individual outage
Outage Probabilities

- Full CSI at Rx and limited at Tx.

- Consider both individual and common outage probabilities
 - Common outage: either one or both UEs information is in outage.
 - Individual outage: one UE information is in outage regardless of the other UE information.

- The outage probabilities in Rayleigh fading channels

\[\text{Rates: } R_1 \leq A_1, \quad R_2 \leq A_2, \]

\[\begin{align*}
\text{Individual Outage (UE_1)} & \quad \text{Individual Outage (UE_2)} \\
R_2 & \quad R_2 \\
A_2 & \quad A_2 \\
B & \quad B \\
C & \quad C \\
& \quad A
\end{align*} \]

\[\begin{align*}
\text{Common Outage} & \quad \text{Common Outage} \\
R_2 & \quad R_2 \\
A_2 & \quad A_2 \\
B & \quad B \\
C & \quad C \\
& \quad A
\end{align*} \]

Concurrent trans. with SIC

\[\text{Rates: } R_1 \leq B_1, \quad R_2 \leq B_2, \quad R_1 + R_2 \leq B_3 \]

\[\begin{align*}
\text{Individual Outage (UE_1)} & \quad \text{Individual Outage (UE_2)} \\
R_2 & \quad R_2 \\
B & \quad B \\
C & \quad C \\
& \quad A
\end{align*} \]

\[\begin{align*}
\text{Common Outage} & \quad \text{Common Outage} \\
R_2 & \quad R_2 \\
B & \quad B \\
C & \quad C \\
& \quad A
\end{align*} \]
Cooperative Transmission Outages

Outage at UE2

No Outage at UE2 but at outage UE1

No Outage at both UEs but outage at the BS

Coop. and/or private part

Phase 1

Phase 1

Phase 1

Phase 2

Phase 2

Phase 3

Mai Vu
Outage Analysis for Cooperative Transmission

Outage can occur at UEs in addition to the BS
- But cooperative links are stronger than direct links
- Hence outage at UEs is small (insignificant)
- Cooperation reduces outage probability

Superposition coding
- Outage for **cooperative and private** parts
Outage at the BS (if no outage at UEs)

\[R_{10} \leq J_4 - R_p, \quad R_{20} \leq J_5 - R_p, \quad R_{10} + R_{20} \leq J_6 - R_p, \]

where \(R_p = R_{11} + R_{22} \)

\[R_{12} \leq J_1, \quad R_{22} \leq J_2, \quad R_{12} + R_{22} \leq J_3, \]

Cooperative rates const.

Private rates const.

Cooperative parts outage: Outage of any cooperative part leads to an outage at both private parts because of superposition encoding

\[(w_{20}, w_{11}, w_{22}) \times \]

\[w_{10} \]

\[(w_{10}, w_{20}, w_{11}, w_{22}) \times \]

\[(w_{20}, w_{11}, w_{22}) \times \]

\[w_{10} \]

Common and individual Outages for private parts (no outage for the coop. parts)

Individual Outage (UE1)

Individual Outage (UE2)

Common Outage
Summary of the Outage Analyses

<table>
<thead>
<tr>
<th>*Resource Part. LTE & LTE-A</th>
<th>*Concurrent Trans. with SIC</th>
<th>*Coop. Trans. using D2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>• No message splitting</td>
<td>• No message splitting</td>
<td>• Coop. & private message splitting (outage for each part)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Additional outage at UEs</td>
</tr>
<tr>
<td>• Conventional coding</td>
<td>• Conventional coding</td>
<td>• Superposition Coding</td>
</tr>
<tr>
<td>• Outage at the BS only</td>
<td>• Outage at the BS only</td>
<td>• Outage at the UEs & the BS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Rates at BS:</td>
<td>• Rates at BS:</td>
<td>• Outage at UE1 or UE2 leads to a common outage</td>
</tr>
<tr>
<td>$R_1 \leq A_1$, $R_2 \leq A_2$,</td>
<td>$R_1 \leq B_1$, $R_2 \leq B_2$,</td>
<td>• No outage at UEs but at BS</td>
</tr>
<tr>
<td>$R_1 + R_2 \leq B_3$</td>
<td>$R_1 + R_2 \leq B_3$</td>
<td>• Coop. Rates $R_{10} \leq J_4$, $R_{20} \leq J_5$, $R_{10} + R_{20} \leq J_6$,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Private Rates $R_{12} \leq J_1$, $R_{22} \leq J_2$, $R_{12} + R_{22} \leq J_3$,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Outage Probability of User-assisted Relaying

Outage Probabilities of Both Users Cooperating

\(R_1 = R_2 = 2 \text{ bps/Hz} \)

- Concurrent trans. with SIC
- Common outage in Resource part. (LTE-A)
- Proposed TD coop. Trans.

Graph Details
- **Outage Probability** vs. **SNR\(_1\) (dB)**
- **Common Outage (P\(_c\))**
- **UE\(_1\) Outage (P\(_1\))**
- **UE\(_2\) Outage (P\(_2\))**

Diagram Notes
- UE\(_1\) and UE\(_2\) are located at distances d=12 and d=30 from the BS.
- The diagram illustrates the outage probabilities for different SNR values.
Outage Rate Regions at 1% Outage Probability

\[P_1 = P_2 = 0.01 \]

- **Common outage rate region**
- **Individual outage rate region**

Proposed TD coop. trans., SNR_1 = 15 dB

Resource partitioning (LTE-A), SNR_1 = 20 dB

Concurrent trans. with SIC, SNR_1 = 20 dB

Conclusion

• User-assisted cooperative relaying for uplink communication
 – Utilizes hybrid D2D-infrastructure cooperation
 – Has advanced signal design and decoding
 – Employs partial decode-forward relaying and joint decoding at BS

• Cooperation improves both the data rate and reliability
 – Compared to current LTE implementation

• Network deployment shows significant performance gain
 – Average rate gain up to 50%, max gain up to 200%
 – Suitable for crowded metropolitan areas and small cells
Relevant Publications

More information

- Research group: **Tufts LiNKS**

 Laboratory for communication in Networked Systems

 http://links.ece.tufts.edu

- My webpage http://www.eecs.tufts.edu/~maivu/

- Email maivu@ece.tufts.edu