THE EFFECT OF RECEIVER DIVERSITY COMBINING ON OPTIMUM ENERGY ALLOCATION AND ENERGY EFFICIENCY OF COOPERATIVE WIRELESS TRANSMISSION SYSTEMS

Jie Yang and D. R. Brown III
ECE Department, Worcester Polytechnic Institute

Scenario

$|h|^2 = H$
$|g_r|^2 = G_r$

$y_r = |h| a_s x + w_r$

$y_{d1} = |g_s| a_s x + w_{d1}$

$y_{d2} = |g_r| a_r y_r + w_{d2}$

Destination receives two observations of the same information

Problem Statement

• Optimum energy allocation strategy to minimize the total energy
• Effect of diversity combining techniques on energy efficiency and energy allocation

System Model

• Amplify & Forward Protocol
• Rayleigh fading channels with AWGN
• Destination uses MRC or EGC
• Channel amplitudes are known

Related Work

SNR Analysis

$\text{SNR}_{\text{mrc}} = G_s \mathcal{E}_s + \frac{H \mathcal{E}_s G_r \mathcal{E}_r}{1 + H \mathcal{E}_s + G_r \mathcal{E}_r}$

$\text{SNR}_{\text{egc}} = \frac{G_s \mathcal{E}_s}{2} + \frac{\mathcal{E}_s G_r \mathcal{E}_r (H - \frac{G_s}{2}) + 2 \mathcal{E}_s (G_r G_s \mathcal{E}_r H (H \mathcal{E}_s + 1))^{1/2}}{2 (H \mathcal{E}_s + 1) + G_r \mathcal{E}_r}$

\mathcal{E}_s denotes the source energy, \mathcal{E}_r denotes the relay energy