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Abstract—This paper considers the problem of tracking a time-
varying variable with serially-connected Kalman filters. Two
nodes are assumed to be serially connected to the target such
that only node 1 can directly observe a noisy signal from the
target. Node 2 can only observe noisy signals from node 1
corresponding to a linear combination of the current observa-
tion and current state estimate at node 1. The objective is to
find the linear combination at node 1 that minimizes the mean
squared error of the state estimates at node 2 under a transmit
power constraint for the signals from node 1 to node 2. An
augmented state model is developed to facilitate tracking at
node 2. Transmission scaling factors are also derived to satisfy
the power constraint. Numerical results are presented for two-
node serial tracking in two scenarios: scalar parameter tracking
and two-state oscillator phase and frequency tracking. In the
scalar parameter tracking example, the results demonstrate that
a non-trivial combination of the observation and state estimate
at node 1 can improve performance at node 2 with respect to a
baseline scenario of simply forwarding scaled observations. In
the two-state clock tracking example, an optimal transmission
strategy is developed which allows node 2 to achieve the same
tracking performance as at node 1.

TABLE OF CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 TRACKING AT NODE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 TRANSMISSION SCALING . . . . . . . . . . . . . . . . . . . . . . . 3
4 STEADY-STATE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . 4
5 NUMERICAL EXAMPLES . . . . . . . . . . . . . . . . . . . . . . . . 4
6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

APPENDIX: INITIAL PREDICTION COVARI-
ANCE AT NODE 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1. INTRODUCTION
Consider a discrete-time linear time-invariant dynamic sys-
tem with state x[k] ∈ Rn and state update equation

x[k + 1] = Fx[k] +Gu[k] (1)

with F ∈ Rn×n and G ∈ Rn×p known and where u[k] ∈ Rp
is zero-mean Gaussian process noise with covariance

E[u[k]u>[`]] = Qδ[k − `] (2)
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where Q ∈ Rp×p and δ[k − `] = 1 if k = ` and is equal to
zero otherwise.

As shown in Fig. 1, we consider a scenario in which there are
two nodes in the system that wish to estimate/predict the state
x[k]. We assume observations at each node are scalar. Node 1
observes the state x[k] directly through the equation

y1[k] = H1x[k] + w1[k] (3)

with y1[k] ∈ R, H1 ∈ R1×n, and where w1[k] ∈ R is zero-
mean Gaussian measurement noise with covariance

E [w1[k]w1[`]] = r1δ[k − `]. (4)

We assume that the measurement noise w1[k] is independent
of the process noise u[k]. Node 1 uses a Kalman filter to gen-
erate minimum mean squared error (MMSE) estimates and
one-step predictions of the state x[k]. The MMSE estimate of
the state x[k] given observations {y1[0], . . . , y1[k]} at node 1
is denoted as x̂1[k|k]. The MMSE prediction of the state
x[k + 1] given observations {y1[0], . . . , y1[k]} at node 1 is
denoted as x̂1[k + 1|k]. According to the standard Kalman
filter recursion [1] with Σ1[k|k] and Σ1[k + 1|k] denoting
the estimate and one-step prediction covariances at node 1,
respectively, we have

K1[k] = Σ1[k|k−1]H>1
(
H1Σ1[k|k−1]H>1 +r1

)−1
(5)

x̂1[k|k] = x̂1[k|k−1]+K1[k](y1[k]−H1x̂1[k|k−1]) (6)
Σ1[k|k] = Σ1[k|k−1]−K1[k]H1Σ1[k|k−1] (7)

and

x̂1[k+1|k] = Fx̂1[k|k] (8)

Σ1[k+1|k] = FΣ1[k|k]F> +GQG>. (9)

Node 2 also wants to track the state x[k] but can only observe
the state through noisy scalar transmissions from node 1. In
other words, node 2 observes

y2[k] = v1[k] + w2[k] (10)

where v1[k] is a scalar transmitted by node 1 to node 2 at
time k, based only on information known to node 1 at time k,
and where w2[k] is zero-mean Gaussian measurement noise,
assumed to be independent ofw1[k] and u[k], with covariance

E[w2[k]w2[`]] = r2δ[k − `]. (11)

We assume that transmissions from node 1 to node 2 are
linear combinations of the current observation and estimate
at node 1 of the form

v1[k] = a>[k]

[
y1[k]
x̂1[k|k]

]
= a>[k]z[k] (12)
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Figure 1. System model.

with z[k] ∈ Rn+1. The goal is to select the linear combiner
a[k] to minimize the mean squared state estimation error at
node 2 with respect to the original state x[k] while satisfying
an average power constraint such that var(v1[k]) ≤ P [k].
More formally, we wish to solve

a∗[k] = arg min
a[k]: var(v1[k])≤P [k]

E
[
|x[k]− x̂2[k|k]|2

]
(13)

where x̂2[k|k] are the MMSE estimates of x[k] given obser-
vations {y2[0], . . . , y2[k]} at node 2. The power constraint
P [k] may be fixed or time-varying.

A Simple Forwarding Strategy

Since the observations at both nodes are assumed to be scalar,
a simple forwarding strategy is for node 1 to directly forward
scaled copies its observations to node 2, i.e.,

v1[k] = α[k]y1[k] = α[k] [1 0 · · · 0] z[k] (14)

with α[k] chosen to satisfy the power constraint var(v1[k]) ≤
P [k] and with z[k] defined in (12). Node 2 can then track the
state at node 1 using the same Kalman filter recursion as in
(5) – (9) except replacing r1 by α2[k]r1+r2 in (5) and scaling
H1 by α[k] in (5) – (7).

This simple forwarding strategy will serve as a benchmark for
quantifying the performance gain achieved through optimal
forwarding as in (13).

Related Prior Work

The forwarding strategy employed by node 1 is conceptually
similar to a constrained measurement strategy at node 2.
Measurement strategies for discrete-time state estimators
have been considered in [2] where the problem was to op-
timally select a single sensor measurement from a pool of
available sensors. The sensor selection problem has been
extensively studied in a variety of contexts under various
constraints, e.g., [3], [4], [5], [6]. The problem considered
in this paper is somewhat similar to the sensor selection
problem in that our goal is to find a measurement strategy
at node 2 (equivalently, a forwarding strategy at node 1) that
minimizes the mean squared error at node 2. The majority
of the sensor selection literature, however, considers com-
binatorial measurement strategies, e.g., selecting k sensor
measurements from a pool of m > k possible sensors.
In this paper, the measurement strategy in (12) can be any
linear combination of the observation and the state estimate
at node 1. Moreover, in the setting considered in this paper,
the “sensors” represented by the observation and the state
estimate at node 1 are highly correlated.

Another approach toward designing good measurement
strategies for parameter tracking involves minimizing the

condition number of the observability matrix [7]. This
has been considered in the context of the sensor placement
problem, e.g., [8], [9], [10], [11]. This approach is heuris-
tic, however, and does not necessarily minimize the mean
squared error at node 2 in our setting. In this paper, we
show an example of a system in which a minimum condition
number strategy does not yield the minimum mean squared
error performance at node 2.

2. TRACKING AT NODE 2
From the system model in Section 1, recall that the observa-
tion at node 2 is a linear combination of the observation y1[k]
and the state estimate x̂1[k|k] plus additive white Gaussian
noise w2[k]. We define the state estimation error as

x̃1[k|k] = x[k]− x̂1[k|k]. (15)

and further define the augmented state at node 2 as

x̄[k] =

[
x[k]
x̃1[k|k]
w1[k]

]
∈ R2n+1. (16)

As shown in (17) – (24), the estimation error x̃[k|k] at node 1
has its own linear but time-varying dynamics of the form

x̃1[k + 1|k + 1] = F̃ [k]x̃1[k|k] + G̃[k]

[
u[k]

w1[k + 1]

]
(25)

with
F̃ [k] = (I −K1[k + 1]H1)F (26)

and

G̃[k] = [(I −K1[k + 1]H1)G −K1[k + 1]] (27)

From these results, we can write the time-varying augmented
state model at node 2 as

x̄[k + 1] = F̄ [k]x̄[k] + Ḡ[k]ū[k] (28)

with

F̄ [k] =

[
F 0 0
0 F̃ [k] 0
0 0 0

]
, (29)

Ḡ[k] =

[
G 0

(I −K1[k + 1]H1)G −K1[k + 1]
0 1

]
, (30)

and

ū[k] =

[
u[k]

w1[k + 1]

]
(31)
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x̃1[k + 1|k + 1] = x[k + 1]− x̂1[k + 1|k + 1] (17)
= x[k + 1]− x̂1[k + 1|k]−K1[k + 1] (y1[k + 1]−H1x̂1[k + 1|k]) (18)
= Fx[k] +Gu[k]− Fx̂1[k|k]−K1[k + 1] (y1[k + 1]−H1Fx̂1[k|k]) (19)
= Fx̃1[k|k] +Gu[k]−K1[k + 1] (H1x[k + 1] + w1[k + 1]−H1Fx̂1[k|k]) (20)
= Fx̃1[k|k] +Gu[k]−K1[k + 1] (H1Fx[k] +H1Gu[k] + w1[k + 1]−H1Fx̂1[k|k]) (21)
= Fx̃1[k|k] +Gu[k]−K1[k + 1] (H1Fx̃1[k|k] +H1Gu[k] + w1[k + 1]) (22)
= (I −K1[k + 1]H1) (Fx̃1[k|k] +Gu[k])−K1[k + 1]w1[k + 1] (23)

= F̃ [k]x̃1[k|k] + G̃[k]

[
u[k]

w1[k + 1]

]
(24)

where ū[k] is zero-mean white Gaussian process noise with

Q̄ = E[ū[k]ū>[k]] = diag(Q, r1). (32)

The observations at node 2 follow as

y2[k] = a>[k]

[
y1[k]
x̂1[k|k]

]
+ w2[k] (33)

=
[
a1[k] a>2 [k]

] [H1x[k] + w1[k]
x[k]− x̃1[k|k]

]
+ w2[k] (34)

= H̄[k]x̄[k] + w2[k] (35)

with a1[k] ∈ R, a2[k] ∈ Rn, and

H̄[k] =
[
a1[k]H1 + a>2 [k] −a>2 [k] a1[k]

]
. (36)

Hence, at node 2 we have a linear time-varying augmented
state-space model which satisfies the requirements of a stan-
dard filtering problem with white and mutually independent
process and measurement noises. This model can be used
in conjunction with a Kalman filter to generate MMSE es-
timates of the original state x[k]. The MMSE estimate of
the state x̄[k] given observations {y2[0], . . . , y2[k]} at node 2
is denoted as x̂2[k|k]. The MMSE prediction of the state
x̄[k + 1] given observations {y2[0], . . . , y2[k]} at node 2 is
denoted as x̂2[k+1|k]. With Σ2[k|k] and Σ2[k+1|k] denoting
the estimate and one-step prediction covariances at node 2,
respectively, we have the Kalman filter recursion at node 2
given as

K2[k] = Σ2[k|k−1]H̄>
(
H̄Σ2[k|k−1]H̄>+r2

)−1
(37)

x̂2[k|k] = x̂2[k|k−1]+K2[k]
(
y2[k]−H̄x̂2[k|k−1]

)
(38)

Σ2[k|k] = Σ2[k|k−1]−K2[k]H̄Σ2[k|k−1] (39)

and

x̂2[k+1|k] = F̄ x̂2[k|k] (40)

Σ2[k+1|k] = F̄Σ2[k|k]F̄> + ḠQ̄Ḡ>. (41)

An expression for the initial prediction covariance Σ2[0| − 1]
at node 2 prior to the first observation y2[0] is provided in the
Appendix.

3. TRANSMISSION SCALING
This section develops an expression for the transmission
power var(v1[k]) to facilitate transmission scaling to satisfy

the average transmit power constraint var(v1[k]) ≤ P [k].
From (12), the variance of v1[k] can be written as

var(v1[k]) = a>[k]cov (z[k], z[k]) a[k] (42)

= a>[k]Γ[k]a[k] (43)

where

Γ[k]=

[
cov (y1[k], y1[k]) cov (y1[k], x̂1[k|k])

cov (x̂1[k|k], y1[k]) cov (x̂1[k|k], x̂1[k|k])

]
(44)

is the “open loop” covariance of the observations and state es-
timates used to compute the appropriate transmission scaling
to satisfy the power constraint.

It is straightforward to compute

cov (y1[k], y1[k]) = H1Σx[k]H>1 + r1 (45)

where Σx[k] = cov (x[k], x[k]) is the covariance of the state
at time k which follows the dynamics

Σx[k + 1] = FΣx[k]F> +Q (46)

with initial covariance Σx[0]. To compute the remaining
terms in Γ[k], we can use the principle of orthogonality. The
principle of orthogonality implies that

E
[
(x[k]− x̂1[k|k])y>1 [k]

]
= 0 (47)

which is equivalent to

E
[
x[k]y>1 [k]

]
= E

[
x̂1[k|k]y>1 [k]

]
. (48)

Since all quantities are zero-mean, we have

cov (x̂1[k|k], y1[k]) = cov (x[k], y1[k]) (49)

= Σx[k]H>1 . (50)

We now compute an expression for cov (x̂1[k|k], x̂1[k|k]).
From (15), we have

Σ1[k|k] = Σx[k]− 2cov(x[k], x̂1[k|k])

+ cov(x̂1[k|k], x̂1[k|k]). (51)

Observe that

cov(x[k], x̂1[k|k]) = cov(x̂1[k|k] + x̃1[k|k], x̂1[k|k]) (52)
= cov(x̂1[k|k], x̂1[k|k]) (53)
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where the second equality follows from the principle of
orthogonality. This then implies

cov(x̂1[k|k], x̂1[k|k]) = Σx[k]− Σ1[k|k]. (54)

Summarizing these results, we have

Γ[k] =

[
H1Σx[k]H>1 + r1 H1Σx[k]

Σx[k]H>1 Σx[k]− Σ1[k|k]

]
. (55)

Since there is no advantage to not using all of the available
transmission power at each time k, we can set

var(v1[k]) = a>[k]Γ[k]a[k] = P [k]. (56)

In the case of a fixed mixing vector b satisfying b>Γ[k]b > 0
for all k, we can write a[k] = α[k]b with scale factor α[k]
chosen to satisfy the transmit power constraint. The required
transmission scaling α[k] can be calculated as

α[k] =

√
P [k]

b>Γ[k]b
. (57)

Note that Σx[k] can grow without bound if F has one or
more eigenvalues with magnitude greater than or equal to
one. Consequently, elements of Γ[k] may also grow without
bound. To avoid causing α[k]→ 0 in this case, it is necessary
either to select b to be orthogonal to the unbounded modes of
Γ[k] or to allow P [k] to scale at the same rate as b>Γ[k]b. An
example with unbounded Σx[k] is considered in more detail
in Section 5.

4. STEADY-STATE ANALYSIS
At node 1, since the state-space model is time-invariant,
standard Riccati techniques can be used to solve for the
unique positive definite steady-state prediction covariance
under standard observability and controllability assumptions
[1].

At node 2, the state-space model is time varying. Never-
theless, if a steady-state solution is achieved at node 1, each
of the matrices at node 2 approaches a steady-state value as
k →∞. Observe that

F̄ [k]→

[
F 0 0
0 (I −Kss

1 H1)F 0
0 0 0

]
= F̄ ss (58)

Ḡ[k]→

[
G 0

(I −Kss
1 H1)G −Kss

1
0 1

]
= Ḡss (59)

where Kss
1 is the steady-state Kalman gain at node 1.

In the case of a fixed mixing vector b with a[k] = α[k]b, if
the limit

αss = lim
k→∞

√
P [k]

b>Γ[k]b
(60)

exists, then the mixing vector a[k] converges to

a[k]→ αssb = αss

[
by
bx

]
(61)

with by ∈ R and bx ∈ Rn. Consequently, the observation
matrix at node 2 converges to

H̄[k]→ αss
[
b>y H1 + b>x −b>x b>y

]
= H̄ss. (62)

If the standard observability and controllability conditions are
satisfied, we can solve the Riccati equation for the unique
positive definite steady-state prediction covariance at node 2
using the limiting matrix values.

5. NUMERICAL EXAMPLES
This section provides two numerical examples demonstrating
the performance of serially connected Kalman filters. In the
first example, we consider a simple stable scalar system. This
example illustrates the main ideas with minimum notational
overhead and shows that a nontrivial combination of the
observation and state is optimal for minimizing the mean
squared one-step prediction and estimation errors at node 2.
We also show that minimizing the condition number of the
observability matrix at node 2 does not necessarily result in
the minimum MSE at node 2. The second example considers
a two-state oscillator tracking problem. The state dynamics
are unstable in this problem, but we show under a transmit
power constraint proportional to the power of the observa-
tions at node 1, node 2 can achieve identical mean squared
one-step prediction and estimation error to that at node 1.
This result is somewhat surprising since it implies there is no
loss of steady-state performance by serially transmitting an
appropriate mixture of the observation and state from node 1
to node 2.

Stable Scalar System

We first consider a stable dynamic system governed by

x[k + 1] = Fx[k] +Gu[k] (63)

with F = 0.95, G = 1, and Q = E[u2[k]] = 0.04. Node 1
observes

y1[k] = H1x[k] + w1[k] (64)

with H1 = 1 and r1 = E[w2
1[k]] = 0.04. The initial state

is distributed as x[0] ∼ N (0, 1). The steady-state variables
at node 1 can be computed via the discrete-time algebraic
Riccati equation as

lim
k→∞

Σ1[k + 1|k] ≈ 0.0619 (65)

lim
k→∞

K1[k] = Kss
1 ≈ 0.6076 (66)

lim
k→∞

Σ1[k|k] ≈ 0.0243. (67)

Figure 2 shows the one-step prediction and estimation perfor-
mance of oscillator tracking at node 1 and node 2 in the base-
line case with a mixing vector of the form a[k] = α[k][1, 0]>.
This mixing vector corresponds to simply forwarding scaled
copies of the noisy observations at node 1 to node 2. We
assume a time-varying power constraint

P [k] = var(y1[k]) = H1Σx[k]H>1 + r1 (68)

which corresponds to node 2 forwarding observations to
node 1 at the same average power that they are received at
node 1. Since this system is stable, P [k] will be finite for
all k. This power constraint also implies that α[k] = 1 for
all k and

H̄[k] = [1 0 1] (69)
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for all k. We can compute the steady-state state variance by
solving the discrete Lyapunov equation

FXF> −X +Q = 0 (70)

which results in steady-state values for the state variance,
power constraint, and observation/state covariance as

lim
k→∞

Σx[k] ≈ 0.4103 (71)

lim
k→∞

P [k] ≈ 0.4503 (72)

lim
k→∞

Γ[k] ≈
[
0.4503 0.4103
0.4103 0.3860

]
(73)

respectively. The resulting steady-state variables at node 2
can be computed as

lim
k→∞

Σ2[k + 1|k] ≈

[
0.0749 0.0243 0.0000
0.0243 0.0243 −0.0243
0.0000 −0.0243 0.0400

]
(74)

lim
k→∞

K2[k] ≈

[
0.4836
0.0000
0.2582

]
(75)

and

lim
k→∞

Σ2[k|k] ≈

[
0.0387 0.0243 −0.0193
0.0243 0.0243 −0.0243
−0.0193 −0.0243 0.0297

]
(76)

The (1,1) elements of limk→∞Σ2[k+1|k] and limk→∞ Σ2[k|k]
are plotted as dashed lines in Figure 2.
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Figure 2. One-step prediction variance and estimation
variance in the stable scalar system scenario. Dashed lines
correspond to steady-state performance calculations via the
discrete-time algebraic Riccati equation.

We now consider optimizing the mixing vector to minimize
the mean squared one-step prediction and estimation error at
node 2. We consider a mixing vector of the form

a[k] = α[k]

[
b1
b2

]
∈ R2 (77)

with b1 > 0 and α[k] calculated to satisfy the power con-
straint P [k]. This leads to an observation matrix at node 2 of
the form

H̄[k] = α[k] [b1 + b2 −b2 b1] . (78)

Figure 3 shows the steady-state one-step prediction variance
and estimation variance at node 2 for this stable scalar system
example as a function of the mixing parameter ratio b2/b1.
The minimum occurs at b2/b1 ≈ −0.787 and the resulting
steady-state variables at node 2 can be computed as

lim
k→∞

Σ2[k + 1|k] ≈

[
0.0711 0.0243 0.0000
0.0243 0.0243 −0.0243
0.0000 −0.0243 0.0400

]
(79)

lim
k→∞

K2[k] ≈

[
0.3326

0
0.2026

]
(80)

and

lim
k→∞

Σ2[k|k] ≈

[
0.0344 0.0243 −0.0223
0.0243 0.0243 −0.0243
−0.0223 −0.0243 0.0264

]
(81)

By optimally mixing the observation and the estimate, we
observe approximately a 5% reduction in the one-step state
prediction variance and an 11% reduction in the state estima-
tion variance at node 2 with respect to the baseline case of
simply forwarding noisy observations.

There is also a sharp maximum in the prediction/estimation
variances at b2/b1 ≈ −1.063. With this mixing parameter,
the steady-state variables at node 2 can be computed as

lim
k→∞

Σ2[k + 1|k] ≈

[
0.4103 0.0243 −0.0000
0.0243 0.0243 −0.0243
−0.0000 −0.0243 0.0400

]
(82)

lim
k→∞

K2[k] ≈

[−0.0001
0

0.1629

]
(83)

and

lim
k→∞

Σ2[k|k] ≈

[
0.4103 0.0243 0.0000
0.0243 0.0243 −0.0243
0.0000 −0.0243 0.0270

]
. (84)

In this case, the estimation and prediction covariances are
almost identical except with regards to the third state cor-
responding to w1[k] and are considerably worse than the
baseline case of simply forwarding noisy observations.

Figure 4 shows the condition number of the observability
matrix resulting from the steady-state matrices F̄ ss and H̄ss at
node 2 as a function of the fixed mixing vector b = [b1, b2]>

with b1 > 0 and a[k] = α[k]b. While the condition number
attains a local minimum at the MMSE-optimal operating
point b2/b1 ≈ −0.787, the global minimum condition num-
ber occurs at b2/b1 ≈ −1.5. As shown in Fig. 3, setting
b2/b1 ≈ −1.5 results in a significantly worse MMSE at
node 2 than even the simple forwarding strategy of retrans-
mitting noisy observations.

Oscillator Tracking System

In this section, we consider an oscillator tracking scenario
with discrete-time state

x[k] =

[
φ[k]
φ̇[k]

]
(85)
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Figure 3. Steady-state one-step prediction variance in the
stable scalar system scenario as a function of the fixed mixing
vector b = [b1, b2]> with b1 > 0 and a[k] = α[k]b. The
dashed lines are the steady-state one-step prediction variance
and estimation variance at node 1.
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Figure 4. Condition number of the observability matrix
resulting from the steady-state matrices F̄ ss and H̄ss as a
function of the fixed mixing vector b = [b1, b2]> with b1 > 0
and a[k] = α[k]b. Observe the minimum condition number
occurs at b2/b1 ≈ −1.5.

where φ[k] and φ̇[k] correspond to the phase offset in radians
and frequency offset in radians per second of an oscillator
with respect to a ideal reference. Based on the two-state
models in [12], [13], the state update is given as

x[k + 1] = F (T )x[k] + u[k] (86)

with

F (T ) =

[
1 T
0 1

]
(87)

where T > 0 is an arbitrary sampling period. The process
noise vector u[k]

i.i.d.∼ N (0, Q(T )) corresponds to the white
frequency and random walk frequency process noises that

cause the the local oscillator to deviate from an ideal linear
phase trajectory. The covariance of the discrete-time process
noise is derived from a continuous-time model in [12] and is
given as

Q(T ) = ω2
0

[
q21T + q22

T 3

3 q22
T 2

2

q22
T 2

2 q22T

]
(88)

where ω0 is the nominal oscillator frequency in radians per
second and q21 (units of seconds) and q22 (units of Hertz)
are the process noise parameters corresponding to white fre-
quency noise and random walk frequency noise, respectively.
The process noise parameters q21 and q22 can be estimated by
fitting the theoretical Allan variance

σ2
y(τ) =

q21
τ

+
q22τ

3
(89)

to experimental measurements of the Allan variance over a
range of τ values. For example, the Allan variance specifi-
cations for a Rakon RPFO45 oven-controlled oscillator [14]
are given in Table 1. A least squares fit of (89) to these
specifications yields q21 = 2.31 × 10−21 and q22 = 6.80 ×
10−23.

Table 1. Allan variance specifications for the Rakon
RPFO45 oven-controlled oscillator.

Elapsed time τ (sec) Allan variance specification
0.1 2.25× 10−20

1 0.81× 10−20

10 0.36× 10−20

100 0.36× 10−20

1000 2.25× 10−20

Figures 5 and 6 show the one-step prediction and estimation
performance of oscillator tracking at node 1 and node 2
assuming q21 = 2.31 × 10−21 sec, q22 = 6.80 × 10−23 Hz,
ω0 = 2π · 900× 106 rad/sec, and T = 1 sec. The observation
matrix at node 1 was set to

H1 =
[
1 0

]
(90)

corresponding to phase-only measurements at node 1. The
measurement noise variances were set to

r1 = r2 =

(
2π · 10

360

)2

(91)

corresponding to a 10 degrees standard deviation measure-
ment noise. The power constraint P [k] was set as in (68) and
the mixing vector was set to

b = [1, 0, 0]> (92)

with a[k] = α[k]b andα[k] chosen according to (57) to satisfy
the power constraint. This mixing vector corresponds to the
baseline scenario where node 1 simply forwards scaled noisy
observations to node 2.

The results in Figures 5 and 6 show that the phase and
frequency estimates and predictions at both nodes converge
quickly to their steady-state values as calculated by solving
the discrete-time algebraic Riccati equation as discussed in
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Section 4. The phase predictions/estimates at node 2 suffer
more from the additional noise incurred in the forwarding
process from node 1 to node 2 whereas the frequency predic-
tions/estimates at node 2 have nearly identical performance
to those at node 1.
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node 2: phase prediction monte−carlo

node 1: phase estimate monte−carlo

node 2: phase estimate monte−carlo

Figure 5. One-step prediction variance and estimation
variance for the phase state in the oscillator tracking scenario.
Dashed lines correspond to steady-state performance calcula-
tions via the discrete-time algebraic Riccati equation.
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node 2: freuqency prediction monte−carlo

node 1: frequency estimate monte−carlo

node 2: frequency estimate monte−carlo

Figure 6. One-step prediction variance and estimation
variance for the frequency state in the oscillator tracking sce-
nario. Dashed lines correspond to steady-state performance
calculations via the discrete-time algebraic Riccati equation.

Figure 7 shows the steady-state phase prediction error at
node 2 as a function of the elements in the mixing vector a[k].
For an arbitrary fixed mixing vector b = [b1, b2, b3]> ∈ R3

with b1 > 0 and a[k] = α[k]b, these results show that the best
steady-state phase prediction error performance is achieved
as b2 → −b1 from above with b3 ≥ 0. In this case, the steady-
state phase prediction error variance at node 2 approaches that
of node 1 and is significantly improved with respect to the
baseline case of simply forwarding scaled noisy observations,
i.e., b2 = b3 = 0. Figure 8 shows similar results for steady-
state frequency prediction errors.
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Figure 7. Steady-state one-step prediction variance for the
phase state as a function of the fixed mixing vector b =
[b1, b2, b3]> with b1 > 0 and a[k] = α[k]b in the oscillator
tracking scenario. The dashed line is the steady-state one-step
prediction variance for the phase state at node 1.
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Figure 8. Steady-state one-step prediction variance for the
frequency state as a function of the fixed mixing vector b =
[b1, b2, b3]> with b1 > 0 and a[k] = α[k]b in the oscillator
tracking scenario. The dashed line is the steady-state one-step
prediction variance for the frequency state at node 1.

The steady-state behavior as b2 → −b1 from above deserves
additional explanation. Suppose we have a mixing vector of
the form

a[k] = α[k]

 1

−1 + ε

b3

> (93)

with ε > 0 and α[k] the scale factor computed to satisfy the
power constraint. From (36), we can write

H̄[k] =
[
a1[k]H1 + a>2 [k] −a>2 [k] a1[k]

]
(94)

= α[k]
[
ε b3 1− ε −b3 1

]
. (95)

We can calculate the steady-state scale factor αss =
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limk→∞ α[k] explicitly in the oscillator tracking scenario by
first computing

lim
k→∞

Σx[k]

P [k]
= lim
k→∞

Σx[k]

H1Σx[k]H>1 + r1
=

[
1 0

0 0

]
(96)

since the (1,1) element of Σx[k] grows more quickly than the
other elements in Σx[k]. This implies

lim
k→∞

Γ[k]

P [k]
=

1 1 0

1 1 0

0 0 0

 (97)

using (55) and the fact that Σ1[k|k] is bounded. From (57),
we have

lim
k→∞

α[k] = lim
k→∞

√
P [k]

b>Γ[k]b
(98)

=
1

|b1 + b2|
(99)

=
1

ε
(100)

Hence, in the steady-state, we have

lim
k→∞

H̄[k] =
[
1 b3

ε
1−ε
ε

−b3
ε

1
ε

]
(101)

Although the unbounded elements in limk→∞ H̄[k] cause
numerical problems when solving the discrete-time algebraic
Riccati equation for very small values of ε, (101) implies that
a linear combination of some of the states can be effectively
observed at node 2 without any additional measurement noise
when ε is small. It is easy to verify the observability of the
pair [F̄ ss, H̄ss], hence this allows the steady-state phase and
frequency prediction variances at node 2 to approach those at
node 1 when b2 → −b1 from above.

6. CONCLUSION
This paper studied the problem of tracking a time-varying
variable with serially-connected Kalman filters. Our focus
was on a two-node scenario in which node 1 can directly
measure the state while node 2 can only observe the state
through power-constrained transmissions from node 1. A
time-varying augmented state model was developed for track-
ing at node 2. Detailed numerical results were presented
for a scenario with scalar variable tracking and stable state
dynamics and a scenario with two-state oscillator phase and
frequency tracking and unstable state dynamics. In both sce-
narios, the results demonstrate that a non-trivial combination
of the observation and state estimate at node 1 can improve
performance at node 2 with respect to a baseline scenario of
simply forwarding scaled observations. We also demonstrate
that minimizing the condition number of the observability
matrix does not necessarily result in MMSE-optimal tracking
at node 2.

APPENDIX: INITIAL PREDICTION
COVARIANCE AT NODE 2

Prior to the first observation, the state x̄[0] ∼ N (0,Σ2[0| −
1]). In this appendix, we derive an expression for the initial

prediction covariance Σ2[0| − 1]. The diagonal elements

E[x[0]x>[0]] = Σ1[0| − 1] (102)

E[x̃[0|0]x̃>[0|0]] = Σ1[0|0] (103)

E[w2
1[0]] = r1. (104)

are all given by definition. The off-diagonal element

E[x[0]w1[0]] = 0 (105)

under our assumption that the process and measurement
noises are zero-mean and independent.

We now consider the off-diagonal element E[x[0]x̃>[0|0]].
Since x̂1[0|0] = K1[0]y1[0], we can write

x̃[0|0] = x[0]− x̂1[0|0] (106)
= x[0]−K1[0]y1[0] (107)
= x[0]−K1[0]hx[0]−K1[0]w1[0] (108)
= (I −K1[0]h)x[0]−K1[0]w1[0]. (109)

It follows that

E[x[0]x̃>[0|0]] = E
[
x[0]x>[0]

]
(I −K1[0]h)> (110)

= Σ1[0| − 1](I −K1[0]h)>. (111)

Finally, we consider the off-diagonal element E[w1[0]x̃>[0|0]].
Using (109), this can be computed as

E[w1[0]x̃>[0|0]] = − E[w1[0]w>1 [0]]K>1 [0] (112)

= − r1K>1 [0]. (113)

Putting these results together, we have

Σ̄[0| − 1] =

Σ1[0| − 1] A> 0

A Σ1[0|0] −K1[0]r1
0 −r1K>1 [0] r1

 (114)

with A = (I −K1[0]h)Σ1[0| − 1].
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