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Abstract—A distributed coherent transmission scheme in
which two or more transmit nodes form a beam toward an
intended receiver while directing nulls at a number of other
“protected” receivers is considered. Unlike pure distributed
beamforming, where the ith transmit coefficient depends only
on the ith transmit node’s channel to the intended receiver, the
transmit coefficients of a distributed nullformer each depend on
the channel responses from all of the transmit nodes to all of
the protected nodes. The requirement for each transmit node
to know all of the channels in the system makes distributed
transmit nullforming challenging to implement in the presence

of channel time variations. This paper describes a receiver-
coordinated distributed transmission protocol, in the context of
a state-space dynamic channel model, in which the receive nodes
feed back periodic channel measurements to the transmit cluster.
The transmit nodes use this feedback to generate optimal channel
predictions and then calculate a time-varying transmit vector that
minimizes the average total power at the protected receivers while
satisfying an average power constraint at the intended receiver
during distributed transmission. We demonstrate via analysis and
numerical simulation the efficacy of the technique even with low
channel measurement overhead, infrequent update intervals, and
significant feedback latency.

I. INTRODUCTION

We investigate the following canonical problem in coopera-

tive communication: several transmit nodes sharing a common

message form a beam towards an intended receiver while

steering nulls toward a number of protected receivers. The

virtual array formed by the transmission cluster is adapted

to the propagation channels from each transmitter to each

receiver, while accounting for the different timing references

in the system. In this paper, we show that this can be

accomplished effectively in a receiver-coordinated system, in

which the channel coefficients from transmitters to receivers

are predicted from explicit feedback provided by the receivers.

Transmit beamforming and nullforming are examples of

coherent multi-input multi-output (MIMO) techniques, which

require channel state knowledge at the transmitter (CSIT) at

the transmitter. Such coherent schemes can provide compelling

benefits over techniques that do not employ CSIT, as has been

observed in the context of conventional MIMO schemes based

on centralized antenna arrays [1]. However, realizing such
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coherent schemes in a distributed setting must address the

additional challenge of synchronization across the cooperating

transmitters, which in general do not have a common timing

or carrier reference. Several techniques addressing this issue in

the context of distributed transmit beamforming have emerged

recently, with the goal of providing CSIT either implicitly

or explicitly. These include receiver-coordinated explicit feed-

back [2]–[4], receiver-coordinated summarized feedback [5]–

[7], master-slave synchronization with retrodirective transmis-

sion [8], round-trip retrodirective transmission [9], [10], and

two-way synchronization with retrodirective transmission [11].

Each of these techniques has advantages and disadvantages in

particular applications, as discussed in the survey article [12].

The significant recent progress on the subject of distributed

transmit beamforming has even led to some preliminary ex-

perimental studies including [3], [6], [13].

Despite the recent progress on distributed transmit beam-

forming, all of the literature cited above considers a single

intended receiver and does not account for the possibility of

other receivers in the system that wish to be “protected” from

the signals emitted by the distributed transmission cluster. In

fact, since the distributed transmission cluster is typically a

sparse array, sidelobes are often unavoidable in the transmit

beam pattern and may lead to significant interference on

unintended receivers [14]. This problem was considered in

[15], [16] where a distributed “null-steering beamformer” was

proposed such that the received power at unintended/protected

receivers was set to zero while the received power at the in-

tended receiver was maximized. The analysis in [15] assumes

perfect synchronization of all of the nodes in the system and

perfect “local” CSIT (i.e., each transmitter knows its own

channel to all receivers, but not that of the other transmitters).

Since a nullforming solution depends on the channels from all

transmitters to all receivers, the focus of [15] is on approximate

nullsteering based on local CSIT. Our metric for choosing

beamsteering coefficients is similar to that in [15]: satisfy

an average power constraint at an intended receiver (beam-

forming) while minimizing the total received power over a set

of protected receivers (nullforming). Our approach, however,

explicitly accounts for imperfect synchronization in tracking

and predicting CSIT, and develops a solution that uses global

CSIT predictions (i.e., we employ channel estimates between

all transmitter-receiver pairs).

The key ingredient of our approach is the use of a state

space model to capture the effects of stochastic clock drift and

channel state uncertainty, using a receiver-coordinated protocol

with explicit feedback. This approach was introduced for the



purpose of distributed beamforming in [4], and we show here

that it extends naturally to enable distributed nullforming as

well. Clock drift and channel state uncertainty are particularly

important for nullforming, since nulls tend to be less tolerant

of channel estimation errors than beams. The analysis in this

paper also accounts for feedback latency, which can lead to

stale channel state predictions and degraded performance. Nu-

merical results show that significant margins between intended

and protected receiver power can be achieved in systems with

low measurement overhead, relatively infrequent measurement

intervals, and significant feedback latency.

II. SYSTEM MODEL

We consider the wireless communication system shown in

Figure 1 with N transmit nodes, M protected receivers, and

one intended receiver. For notational convenience, each node

in the system is assumed to possess a single antenna. We

also assume the transmit nodes have some mechanism by

which they can share a common baseband message to be

transmitted to the intended receiver and also have some rough

level of synchronization so that they can effectively participate

in the receiver-coordinated protocol schedule described in

Section IV. The synchronization required here can be achieved

with standard techniques such as global positioning system

(GPS), network time protocol (NTP), or potentially through

feedback messages from the receive nodes. Precise carrier

synchronization as described in [11] is not assumed.

distributed transmission cluster
protected
receivers

intended
receiver

nulls

main beam

forward link

reverse link (feedback)

Fig. 1. System model with an N -node distributed transmission cluster, M
protected receivers, and one intended receiver.

The nominal transmit frequency in the forward link from

the distributed transmit cluster to the receivers is at ωc. All

forward link channels are modeled as narrowband, linear, and

time invariant (LTI). Enumerating the protected receivers as

m = 1, . . . ,M and adopting the convention that the intended

receiver is node 0, we denote the channel from transmit node

n to receive node m as g(n,m) ∈ C for n = 1, . . . , N
and m = 0, . . . ,M . These LTI propagation channels, in

contrast to the time-varying “effective” channels described in

the following sections, do not include the effect of carrier

phase offsets between transmit node n and receive node m.

III. TWO-STATE OSCILLATOR MODEL

In conventional centralized antenna arrays, the array ele-

ments are driven by a common oscillator. An important distinc-

tion in distributed transmission schemes is that each transmit

node has an independent local oscillator. If the transmit nodes

are not synchronized, the independent oscillators cause phase

variations in each “effective” channel from transmit node n
to receive node m even when the propagation channels g(n,m)

are otherwise time invariant.

The carrier in a wireless transceiver is typically generated

by multiplying up the frequency of a local oscillator. Based on

the two-state local oscillator models in [17], [18], we define

the discrete-time state of the nth transmit node’s carrier as

x
(n)

t [k] = [φ(n)

t [k], φ̇(n)

t [k]]⊤ where φ(n)

t [k] corresponds to the

carrier phase offset in radians at transmit node n with respect

to an ideal carrier phase reference at time k. The state update

of the nth transmit node’s carrier is governed by

x
(n)

t [k + 1] = f (Ts)x
(n)

t [k] + u
(n)

t [k] (1)

where the state update matrix

f(Ts) =

[

1 Ts
0 1

]

, (2)

and where Ts is an arbitrary sampling period selected to be

short enough to avoid aliasing at the largest frequency offsets.

The process noise vector u
(n)

t [k]
i.i.d.
∼ N

(

0,Q(n)

t (Ts)
)

cor-

responds to the white frequency and random walk frequency

process noises that cause the carrier derived from the local

oscillator at transmit node n to deviate from an ideal linear

phase trajectory. The covariance of the discrete-time process

noise is derived from a continuous-time model in [17] and, in

the context of carrier offsets, is given as

Q
(n)

t (Ts) = ω2
cTs

[

p(n)

t + q(n)

t
T 2
s

3 q(n)

t
Ts

2

q(n)

t
Ts

2 q(n)

t

]

(3)

where ωc is the nominal common carrier frequency in radians

per second and p(n)

t (units of seconds) and q(n)

t (units of

Hertz) are the process noise parameters corresponding to

white frequency noise and random walk frequency noise,

respectively. The process noise parameters p(n)

t and q(n)

t can

be estimated by fitting the theoretical Allan variance

σ2
y(τ) =

p(n)

t

τ
+
q(n)

t τ

3
(4)

to experimental measurements of the Allan variance for a

particular family of oscillators over a range of τ values.

Figure 2 shows an example of ten independent state evo-

lutions according to (1) with pt and qt parameters estimated

from the Rakon RPFO45 oven-controlled oscillator datasheet

and scaled for a carrier at 900 MHz. To isolate the effect

of the process noise on the carriers, each state evolution

was initialized at x
(i)

t [0] = [0, 0]⊤, i.e. each carrier was

synchronized in both phase and frequency to the reference at

k = 0. After one second, the standard deviations of the carrier

phase offsets and carrier frequency offsets are approximately

0.27 radians and 0.047 radians/sec, respectively.

The receivers in the system shown in Figure 1 also have

independent local oscillators used to generate carriers for

downmixing that are governed by the same dynamics as (1)

with state x(m)
r [k], process noise u(m)

r [k]
i.i.d.
∼ N (0,Q(m)

r (Ts)),
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Fig. 2. Example oscillator dynamics showing ten independent state evolutions

according to (1) with initial state x
(i)

t [0] = [0, 0]⊤.

and process noise parameters p(m)
r and q(m)

r as in (3) for

m = 0, . . . ,M . Transmissions from node n to receiver m are

conveyed on a carrier nominally at ωc generated at node n,

incur a phase shift over the wireless channel g(n,m), and

are then downmixed by receiver m using the local carrier

nominally at ωc at receiver m.

At time k, the “effective” channel from transmit node n
to receive node m, including the carrier phase offset, can be

written as

h(n,m)[k] = g(n,m)e
j
(

φ
(n)
t [k]−φ(m)

r [k]
)

= |g(n,m)|e
j
(

φ
(n)
t [k]+ψ(n,m)−φ(m)

r [k]
)

= |g(n,m)|ejφ
(n,m)[k]

where ψ(n,m) = ∠g(n,m) is the phase of the LTI channel from

transmit node n to receiver m at the carrier frequency ωc. In

this context, we can define the pairwise carrier offset vector

between transmit node n and receiver m as

δ(n,m)[k] =

[

φ(n,m)[k]

φ̇(n,m)[k]

]

= x
(n)

t [k] +

[

ψ(n,m)

0

]

− x(m)

r [k]. (5)

The pairwise carrier offset is governed by the state update

δ(n,m)[k + 1] = f (Ts)δ
(n,m)[k] + u

(n)

t [k]− u(m)

r [k] (6)

where f(Ts) is given in (2). At receiver m, the 2N -
dimensional vector state of pairwise carrier offsets is then

∆
(m)[k + 1] =







δ(1,m)[k + 1]
..
.

δ(N,m)[k + 1]







=







f(Ts)
. . .

f(Ts)






∆

(m)[k]+







u
(1)

t [k]− u(m)
r [k]

...

u
(N)

t [k]− u(m)
r [k]







= F (Ts)∆
(m)[k] + z

(m)[k].

Note z(m)[k] = Gu(m)[k] where

G =







I2 −I2

. . .
...

I2 −I2






and u(m)[k] =











u
(1)

t [k]
...

u
(N)

t [k]
u(m)
r [k]











and where I2 is the 2 × 2 identity matrix. Under the

assumption that the constituent clock process noises are

all independent such that cov{u(m)[k]} = Q(m)(Ts) =
blockdiag

{

Q
(1)

t (Ts), . . . ,Q
(N)

t (Ts),Q
(m)

r (Ts)
}

, we can say

the 2N -dimensional vector process noise at receiver m is

distributed as z(m)[k] ∼ N
(

0,GQ(m)(Ts)G
⊤
)

.

IV. RECEIVER-COORDINATED PROTOCOL

An overview of the receiver-coordinated distributed trans-

mission protocol is shown in Figure 3. Forward transmis-

sions are divided into measurement and beamforming epochs,

repeating periodically with period Ts which corresponds to

the measurement interval. Reverse link transmissions provide

feedback from the receive nodes to the transmit nodes and are

assumed to be on a different frequency than the uplink signals.

Note that the protocol includes the effects of feedback latency

since the feedback is typically not incorporated in the transmit

weights until a later distributed transmission interval.
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Fig. 3. Receiver-coordinated distributed transmission.

During the forward link measurement intervals, the transmit

nodes simultaneously transmit using code division multiple

access to facilitate signal separation at the receive nodes.

We assume the duration of the measurement transmissions

is small with respect to the frequency offsets such that the

phase of the received signal is approximately constant during

the measurement epoch. At time k, receive node m directly

downmixes the received carrier from transmit node n with

its own local carrier and estimates the resulting phase offset

according to the observation model

y(m)[k] =







1 0
. . .

. . .

1 0






∆

(m)[k]+







v(1,m)[k]
...

v(N,m)[k]






(7)

= H∆
(m)[k] + v(m)[k] (8)

where v(m)[k]
i.i.d.
∼ N (0,R(m)) is the additive white Gaus-

sian measurement noise in the observation with R(m) =
diag(r(1,m), . . . , r(N,m)).



Since the pairwise offset states are coupled across receive

nodes, the optimal approach to tracking the states is to feed the

M+1 measurement vectors (8) back to the transmit nodes and

have each transmit node apply the overall measurement vector

to a Kalman filter to generate the joint MMSE state estimate

∆̂[k | k] ∈ R2N(M+1). This approach, however, places the

computational burden on the transmit nodes and also results in

redundant computation. We propose instead a suboptimal (but

more scalable) approach in which each receive node applies its

observation vector y(m)[k] to a local Kalman filter to generate

a local MMSE state estimate ∆̂
(m)

[k | k] ∈ R2N . These state

estimates are then fed back to the transmit cluster to facilitate

the calculation of the distributed transmit vectors.

Once the transmit cluster has received the feedback, the

phase of the effective channels at any time ℓ > k can

be straightforwardly predicted. Denoting the MMSE phase

prediction as φ̂(n,m)[ℓ | k], we can write the effective channel

prediction from transmitter n to receiver m at time k as

ĥ(n,m)[ℓ | k] = |g(n,m)|ejφ̂
(n,m)[ℓ | k] (9)

since the channel amplitudes are assumed to be known. We

denote the vector of channel predictions from all transmit

nodes to receive node m as ĥ
(m)

[ℓ | k] ∈ CN for ℓ > k. This

vector of channel predictions can be extracted directly from

the Kalman filter state prediction ∆̂
(m)

[ℓ | k] for any ℓ > k.

Each transmit node performs the same calculations and, in

the absence of feedback errors, generates the same effective

channel predictions (9) and prediction error covariance ma-

trices Σ
(m)[ℓ|k]. These quantities are used to calculate the

transmission vector w[ℓ] ∈ CN such that the total expected in-

terference power is minimized subject to the expected intended

receiver power constraint. The details of how the transmission

vector is calculated are discussed in the following section.

V. TRANSMISSION VECTOR CALCULATION

This section derives a closed-form expression for the trans-

mit vector w[ℓ] ∈ CN based on feedback from the receive

nodes and the prediction error covariance matrices Σ
(m)[ℓ|k].

The nth coefficient of the transmit vector w[ℓ] specifies the

transmit amplitude and phase of transmit node n at time ℓ.
The goal is to select transmit coefficients such that a beam

is formed toward the intended receiver and nulls are steered

toward the protected receivers.

If M < N , one approach to forming a transmit vector is to

select w[ℓ] to be orthogonal to ĥ
(m)

[ℓ|k] for all m = 1, . . . ,M
and then scale the resulting transmit vector to satisfy a power

constraint. This “zero-forcing” transmit vector [16] effectively

causes the total predicted instantaneous received power at the

protected receive nodes to become zero. The actual instanta-

neous received power at the protected receive nodes will not

be zero, of course, since the channel predictions are imperfect

[16]. The zero-forcing approach also does not factor the

uncertainty of the channel predictions into the calculation of

the transmit vector. Intuitively, we would like an approach that

optimally attenuates the transmissions of the nodes with less

certain channels to avoid the case of poor channel predictions

“spoiling” the nulls.

Our approach here is to find a transmission vector w[ℓ]
that minimizes the total expected interference power subject

to an expected power constraint at the intended receiver.

By formulating the problem in terms of expected powers,

the transmit vector calculation accounts for the uncertainty

of the channel predictions. This formulation also effectively

maximizes the ratio of the average power at the intended

receiver to the average total interference power.

To develop an explicit method for calculating the transmit

vector, we denote

S(m)[ℓ|k] = E

{

ĥ
(m)

[ℓ|k]
(

ĥ
(m)

[ℓ|k]
)H
}

∈ C
N×N

and state the optimization problem as

w[ℓ] = arg min
v∈Γ(0)

M
∑

m=1

E

{

∣

∣

∣
vH ĥ

(m)

[ℓ|k]
∣

∣

∣

2
}

= arg min
v∈Γ(0)

vH

(

M
∑

m=1

S(m)[ℓ|k]

)

v

= arg min
v∈Γ(0)

vHA[ℓ|k]v

where Γ(0) = {v ∈ CN : vHS(0)[ℓ|k]v = β}. Since A[ℓ|k]
and S(0)[ℓ|k] are both Hermitian and positive definite, the

solution to this optimization problem is well known [19, p.176]

and is given as the eigenvector corresponding to the smallest

eigenvalue in B[ℓ|k] =
(

S(0)[ℓ|k]
)−1

A[ℓ|k], scaled to satisfy

the constraint vHS(0)[ℓ|k]v = β.

We focus now on developing an explicit expression for

S(m)[ℓ|k] in terms of the known quantities at each transmit

node. First, we write the effective channel prediction in (9) as

ĥ(n,m)[ℓ|k] = |g(n,m)|ej(φ
(n,m)[ℓ|k]+φ̃(n,m)[ℓ|k]) (10)

where φ̃(n,m)[ℓ|k] represents the prediction error of the channel

phase. We can then write the (i, n)th element of S(m)[ℓ|k] as

S
(m)

i,n [ℓ|k] = |g(i,m)||g(n,m)|ej(φ
(i,m)[ℓ|k]−φ(n,m)[ℓ|k])×

E
{

ej(φ̃
(i,m)[ℓ|k]−φ̃(n,m)[ℓ|k])

}

.

To evaluate the expectation, we assume the phase prediction

errors are small such that the Taylor series approximations

sin(φ̃(i,m)[ℓ|k]− φ̃(n,m)[ℓ|k]) ≈ φ̃(i,m)[ℓ|k]− φ̃(n,m)[ℓ|k],

cos(φ̃(i,m)[ℓ|k]− φ̃(n,m)[ℓ|k]) ≈ 1−
(φ̃(i,m)[ℓ|k]− φ̃(n,m)[ℓ|k])2

2

hold. Then we can write

E
{

e
j(φ̃(i,m) [ℓ|k]−φ̃(n,m)[ℓ|k])

}

≈1−
E
{

(φ̃(i,m)[ℓ|k]−φ̃(n,m)[ℓ|k])2
}

2

= 1−
σ2
i,m[ℓ|k]− 2ρi,n,m[ℓ|k] + σ2

n,m[ℓ|k]

2
= ξ

(m)

i,n [ℓ|k]

where σ2
i,m[ℓ|k] is the prediction variance of the phase offset

from transmit node i to receive node m at time k, σ2
n,m[ℓ|k]

is the same except from transmit node n, and ρi,n,m[ℓ|k] is



the prediction covariance. Note that ρi,n,m[ℓ|k] 6= 0 because

the receiver’s clock drift is a common source of error for

both phase predictions. Also note that these quantities are all

elements of the prediction covariance matrix Σ
(m)[ℓ|k].

Finally, under our small angle assumption, we can write

ej(φ
(i,m)[k]−φ(n,m)[k]) ≈ ej(φ̂

(i,m)[k]−φ̂(n,m)[k]) (11)

where these pairwise phase offset predictions can be extracted

from the state prediction vector ∆̂
(m)

[ℓ|k]. Putting this all
together, the (i, n)th element of S(m)[ℓ|k] is approximated as

S
(m)

i,n [ℓ|k]≈

{

|g(i,m)|2 i = n

|g(i,m)||g(n,m)|ej(φ̂
(i,m) [ℓ|k]−φ̂(n,m)[ℓ|k])ξ

(m)

i,n [ℓ|k] i 6= n.

All of these quantities are identically computed at the transmit

nodes based on the feedback from the receive nodes. Hence,

the transmit nodes can arrive at a common transmit vector

w[ℓ] at any point in a transmission epoch, from which each

transmit node extracts its transmit coefficient to adjust its local

carrier phase and amplitude. Note these transmit coefficients

are not used during measurement epochs.

VI. NUMERICAL RESULTS

This section presents two numerical examples of the

receiver-coordinated distributed nullforming technique de-

scribed in this paper. In both examples, N = 4 transmit

nodes were randomly placed on a disk with diameter 5 me-

ters centered at the origin. The intended receive node was

placed at (x, y) coordinates (50,0) and M = 2 protected

receive nodes were placed at (50 cos(π/8), 50 sin(π/8)) and

(50 cos(−π/8), 50 sin(−π/8)) with all units in meters. The

received power constraint at the intended receive node was set

to β = 1. The carrier frequency was set to fc = 900 MHz and

the protocol used a measurement interval of Ts = 0.5 seconds.

The measurement epoch was set to the first 10 ms of each

500 ms measurement interval, corresponding to a 2% mea-

surement overhead. The feedback latency was set to one full

measurement interval, i.e. measurements are not incorporated

in the Kalman filter predictions of the immediately subsequent

distributed transmission interval (as illustrated in Figure 3).

In each iteration of the Monte Carlo simulations, new

realizations of the transmit node positions, initial frequency

offsets, clock process noises, and measurement noises were

generated. The oscillators’ initial frequency offsets were uni-

formly distributed over ±0.04 ppm, which corresponds to

±36 Hz at a nominal carrier frequency of 900 MHz. A single-

path propagation model was assumed with channel amplitudes

calculated as |g(n,m)| = 50
d(n,m) where d(n,m) is the distance

between transmit node n and receive mode m in meters.

The nominal phase offset measurement noise variance was

set to r(n,m) = ((5/360)2π)2

|g(n,m)|
which corresponds to a standard

deviation of 5 degrees at a range of 50 meters.

Figure 4 shows the results of a Monte-Carlo simulation

with homogeneous process noise parameters: p(n)

t = p(m)
r =

3×10−4 and q(n)

t = q(m)
r = 1×10−2 for all n = 1, . . . , N and

m = 0, . . . ,M . Distributed transmission begins at t = 1.010
seconds, corresponding to the start of the first distributed

transmission epoch in which the Kalman filter phase pre-

dictions were accurate enough to ensure the small angle

approximations used in Section V were reasonable.
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Fig. 4. Received power simulation homogeneous process noise parameters.

These results show that, initially, when the channel pre-

dictions are relatively inaccurate, the transmit coefficients

prioritize beamforming, as can be seen in the initial gap

between the mean intended receiver power and the mean

incoherent power. As the channel predictions become more

accurate, the optimal transmit vector prioritizes nullforming

and, in this example, the mean intended receiver power is

only slightly above the mean incoherent power. These results

also show that the transmit coefficient magnitudes tend to be

smaller when the channel predictions are less accurate.

After the initial transient, the average total interference

power settles into a steady-state range between approximately

−22 dB and −23 dB, demonstrating that effective nulls are

being driven toward the protected receivers. The nulling per-

formance is better at the start of each distributed transmission

interval but degrades somewhat by the end of the distributed

transmission interval as the state predictions become more

stale. This can be ameliorated to some extent by shortening the

measurement interval and/or reducing the feedback latency.

Since the process and measurement noises are homogeneous

in this example, all of the transmit nodes have identical average

transmit coefficient magnitudes. Figure 5 shows the results of

a Monte-Carlo simulation with heterogeneous process noise

parameters: p(1)

t = 3 × 10−3 and q(1)

t = 1 × 10−1; all

other process noise parameters unchanged. In other words,

transmit node 1 now has a less stable oscillator than all of the

other nodes in the system.

After the initial transient, Figure 5 shows the average total

interference power settles into a periodic steady-state range

between approximately −19.5 dB and −21 dB, which is



slightly worse than the homogeneous process noise parameter

simulation in Figure 4. We also see that transmit node 1’s

average transmit coefficient magnitude is reduced with respect

to the remaining three transmit nodes with more stable oscil-

lators. This demonstrates that the transmit vector calculation

accounts for state prediction uncertainty by emphasizing the

more predictable transmit nodes and deemphasizing the trans-

mit node with the less stable oscillator.
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Fig. 5. Received power simulation heterogeneous process noise parameters.

Finally, the dashed cyan line in both results represents the

predicted performance based on a steady-state error covariance

analysis of the system. This involves determining the predic-

tion error covariance Σ
(m)[k0 + k | k] as k → ∞ by solving

a discrete-time algebraic Riccati equation [20] and projecting

the prediction covariances through the distributed transmission

epoch. In both cases we see that, after the initial transient,

which lasts about 10 seconds, the Monte-Carlo simulations

agree closely with the steady-state predictions.

VII. CONCLUSION

The method presented here allows the formation of a beam

towards an intended receiver, while steering nulls at protected

receivers. Nullforming is more sensitive than beamforming to

errors in channel state, and to the best of our knowledge, this

is the first paper to show that it can be achieved effectively

in a distributed setting despite stochastic clock dynamics.

Our numerical results show that significant margins between

intended and protected receiver power can be achieved in

systems with low measurement overhead, relatively infrequent

measurement intervals, and significant feedback latency. An

important topic for future work is to investigate the effect

of loss or corruption of the feedback information. It is also

important to study the impact of peak power constraints:

a standard null-steering solution has significant amplitude

variations across transmit nodes, and it is of interest to see

if it is possible to obtain good beam-to-null powers under a

peak-to-average power variation constraint across transmitters.
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