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Abstract—This paper describes an approach to master/slave
network synchronization based on bidirectional message ex-
changes without the use of timestamps. Rather than the usual
approach of exchanging digital timestamps through a dedicated
synchronization protocol, an approach is described in which
synchronization information is conveyed implicitly at the physical
layer through the timing of the master node’s responses to
the slave nodes. This approach can reduce overhead and allow
the embedding of synchronization functions in existing network
traffic. A timestamp-free synchronization protocol is described
and its performance is quantified in the presence of delay
estimation error and stochastic local oscillator dynamics. A
filtering framework is also developed to allow each slave node to
accurately infer and correct local clock drifts from multiple noisy
clock offset estimates. Based on fundamental delay estimation
bounds for narrowband signals, numerical results show that
synchronization among the slave nodes can be achieved quickly
and that the resulting steady-state accuracy can be sufficient
to support distributed transmission techniques requiring carrier
phase alignment, e.g. distributed beamforming.
Index Terms—synchronization, delay estimation, oscillator

dynamics, wireless communication, distributed communication
systems

I. INTRODUCTION

Synchronization is the process of establishing a common
notion of time among two or more entities. In the context of
communication networks, synchronization enables coordina-
tion among the nodes in the network and can facilitate schedul-
ing of communication resources, interference avoidance, event
detection/ordering, data fusion, and coordinated wake/sleep
cycles [1]. Precise synchronization, to the order of a fraction
of a carrier period, can also enable distributed transmission
schemes such as retrodirective distributed beamforming [2].
A variety of synchronization protocols and systems have

been developed over the last 30 years, including Network
Time Protocol (NTP) [3], Precision Time Protocol (PTP) [4],
and the Global Positioning System (GPS) [5], [6]. These
systems have limited applicability in wireless networks with
cost/battery/computationally-constrained devices [1]. While
GPS can be used to discipline oscillators, its applicability is
typically limited to infrastructure equipment since GPS re-
ceivers require line of sight channels to GPS satellites, are slow
to acquire accurate timing estimates, are expensive, and have
prohibitive power consumption. NTP and PTP are considered
to be prohibitively complex for resource constrained devices
like sensor nodes [7], [8] and have limited accuracy. Synchro-
nization protocols developed in the last decade specifically for
sensor networks include [1], [7], [9]–[15].

A common theme running through all of the cited syn-
chronization protocols and systems is that they are based on
application-layer or MAC-layer exchanges of digital times-
tamps between nodes in the network. Digital timestamps
inherently have a minimum resolution, limiting accuracy, and
add overhead to the network traffic. Timestamp-free synchro-
nization techniques were originally studied in the context of
natural phenomena, e.g. synchronization of the firing rates of
fireflies, and led to formal mathematical models for systems of
pulse-coupled oscillators in [16], [17] and application of these
models to wireless sensor networks in [18]–[20]. While these
studies represented an exciting paradigm shift with respect
to the prior work, a limitation of the pulse-coupled oscillator
literature is that it is based on unidirectional transmissions and
assumes negligible propagation delays. This inherently limits
the synchronization accuracy of these methods.
Precise timestamp-free synchronization techniques account-

ing for propagation delays were developed recently in the
context of retrodirective distributed transmit beamforming
systems [2], [21]–[24]. These techniques are based on serial
exchanges of unmodulated beacons through a network with a
ring architecture and achieve precise synchronization through
estimation of RF carrier phase and frequency offsets. While
these techniques were shown to be effective for carrier phase
and frequency synchronization, they require some amount of
overhead since they are based on a dedicated synchronization
protocol. Also, due to the unmodulated nature of the beacons,
the synchronization solution achieved with these schemes has
an inherent carrier period ambiguity. To resolve this ambiguity,
an additional time reference is necessary in these systems.
This paper develops an approach to network synchronization

based on bidirectional message exchanges between a master
node and N slave nodes. Rather than requiring a dedicated
synchronization protocol and exchanging digital timestamps,
our approach is to convey implicit timing information in the
physical layer through the timing of the responses from the
master node to the slave nodes. Since no timestamps are
exchanged, synchronization functions can be embedded in
existing network traffic. Also, since the technique is based
on bidirectional message exchanges and delay estimation, it
accounts for propagation delay and its accuracy is only limited
by fundamental estimation bounds. Our focus is on the devel-
opment of precise synchronization schemes in support of dis-
tributed transmission techniques, e.g. distributed beamforming
and/or virtual MIMO, hence we explicitly consider the effects
of local clock drift and stochastic oscillator dynamics and



develop a filtering framework to optimally track and correct
local clock offsets and drifts given only occasional noisy
estimates of the local clock offsets. Based on fundamental
delay estimation bounds for narrowband signals, our numerical
results for timestamp-free synchronization with local filtering
show that synchronization among the slave nodes can be
achieved quickly and that the resulting steady-state accuracy
can be on the order of tens of picoseconds with realistic
oscillator and signaling parameters.

II. SYSTEM MODEL

We consider a time-division duplexed (TDD) wireless net-
work with N + 1 nodes with node 0 serving as the “master”
node and nodes n = 1, . . . , N comprising the “slave” nodes.
The master node could be an infrastructure device such as
an access point or it could simply be a node in the network
promoted to serve as the network’s time server. It is assumed
that the slave nodes can all communicate directly with the
master node.
To ease exposition, we assume the channel between slave

node n and the master node is time-invariant and single-
path with propagation delay denoted as τn. Since the network
is TDD, the propagation delay is assumed to be reciprocal.
Basic electromagnetic principles have long established that
channel reciprocity holds at the antennas when the channel
is accessed at the same frequency in both directions [25].
Channel reciprocity can also be quite accurate at intermediate-
frequency (IF) and/or baseband if a reciprocal transceiver
architecture is used [26] and can be further improved through
transceiver calibration techniques to remove I/Q imbalance
effects [27], [28].
The nodes in the network do not possess a common notion

of time. The following section presents a model of local and
reference time that will be subsequently used in the description
and analysis of the synchronization protocol.

A. Local Clock Dynamics
The focus of this paper is the description and analysis of

a synchronization technique for devices in a wireless ad-hoc
network. To support this focus, it is necessary to explicitly
present a model of local time at each node and describe how
the local time at each node relates to the reference time t at
the master node. The notation t refers to the reference time,
i.e. the “true” time, in the system. All time-based quantities
such as propagation delays and/or frequencies are specified
in reference time unless otherwise noted. The notation tn
corresponds to the local notion of time at node n with t0 = t.
The clock offset at node n at time t with respect to the
master node is denoted as ∆n(t) = tn − t. An event a
that occurs at local time t(a)

n at node n occurs at local time
t(a) = t(a)

n −∆n(t(a)) at the master node.
None of the slave nodes have knowledge of the reference

time t. Based on the two-state models in [29], we define the
discrete-time state of the nth node’s clock at time t = kT as

xn[k] =
[

∆n[k], ∆̇n[k]
]!

where ∆n[k] corresponds to the clock offset at node n with
respect to the master clock. The state update of the nth

transmit node’s clock is governed by

xn[k + 1] = f(T )xn[k] + un[k] (1)

where T is the state update period, the state update matrix

f (T ) =

[

1 T
0 1

]

, (2)

and the process noise vector un[k]
i.i.d.∼ N (0,Qn(T )) cap-

tures the effect of stochastic phase noise in the nth node’s
local oscillator. The covariance of the discrete-time process
noise is derived from a continuous-time model in [29] and is
given as

Qn(T ) = T

[

pn + qn
T 2

3
qn

T
2

qn
T
2

qn

]

(3)

where pn (units of seconds) and qn (units of Hertz) are the
process noise parameters corresponding to white frequency
noise and random walk frequency noise, respectively. The
process noise parameters pn and qn can be estimated by
fitting the theoretical Allan variance σ2

y(τ) = pn/τ + qnτ/3
to experimental measurements of the Allan variance over a
range of τ values. For notational convenience hereafter we
will assume all of the transmitter oscillators to have the same
process noise parameters such that pn = p and qn = q for all
n = 1, . . . , N .

III. TIMESTAMP-FREE SYNCHRONIZATION PROTOCOL
This section describes a timestamp-free synchronization

protocol based on bidirectional message exchanges between
a slave node and the master node. Figure 1 shows the inter-
actions between node n and the master node. We assume that
these interactions occur over a short interval during which the
discrete-time state xn[k] is approximately constant.
The protocol begins with node n transmitting a packet to

the master node at arbitrary local time t(a)
n . The packet arrives

at the master node at local time

t(b) = t(a)
n −∆n[k] + τn

where τn is the propagation delay between node n and the
master node. The master node then transmits a packet back to
node n at time t(c) where t(c) is selected such that

t(b) + t(c)

2
(mod T0) = 0 (4)

where T0 is master node clock tick period. Note that, unlike
the usual sender/receiver synchronization protocol, e.g. [7],
no timestamps are exchanged between the nodes here. Implicit
timing information is embedded in the master node’s response
to node n by selecting t(c) so that a local clock tick the master
node is centered between t(b) and t(c). Since the channel is
reciprocal, node n receives the reply packet from the master
node at local time

t(d)n = t(c) +∆n[k] + τn.
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Fig. 1. Timestamp-free synchronization bidirectional message exchange.

Node n can now estimate its clock tick offset with respect to
the master node by calculating

δ̂n =

(

t(a)
n + t(d)n

2

)

T0

(5)

where the notation (z)T0 corresponds to wrapping z to the
interval [−T0/2, T0/2). Note that, in the absence of estimation
error and wrapping ambiguity, δ̂n = hxn[k] with h = [1, 0].
The offset estimate in (5) can be used directly for immediate
clock offset correction at node n or as an input to a filtering
algorithm to correct both clock offsets and drifts.
This timestamp-free synchronization technique accounts for

propagation delay, hence its accuracy is only limited by the
fundamental bounds of delay estimation and the accuracy of
the channel reciprocity assumption. Note that the technique
also does not require single-path channels. As long as the
effective propagation delay is reciprocal, e.g. both nodes use
the strongest path to estimate arrival times, the propagation
delays cancel in the calculation of δ̂n. The overhead incurred
in this approach is the delay caused by the master node in
timing its response to node n so that a local clock tick at the
master node is centered between t(b) and t(c). This overhead
can be made small by making the clock ticks at the master
node more frequent, at the expense of increased potential for
wrapping ambiguity.

IV. DELAY ESTIMATION AND FILTERING
The timestamp-free synchronization protocol described in

the previous section requires the master and slave nodes to
both be able to accurately estimate time of arrival of the
wirelessly transmitted packets. It is well-known, e.g. [30,
p.55], that the Cramer-Rao lower bound (CRLB) for delay
estimation of signals observed in additive white Gaussian noise

(AWGN) is inversely proportional to the signal-to-noise ratio
(SNR) and the mean squared bandwidth of the signal. The
analysis leading to this bound, however, assumes a baseband
signal. Weiss and Weinstein [31], [32] showed that narrow-
band signal delay estimation performance also improves with
carrier frequency when the SNR exceeds a certain threshold.
Intuitively, above this SNR threshold, the presence of the
carrier in the narrowband signal provides additional detail in
the correlator output that can be used to refine delay estimates
to a fraction of a carrier period.
From [31], [32], the CRLB for estimating the time of arrival

of a narrowband signal in AWGN can be written as

var(τ̂ ) ≥ π

WT · ω2
0 · SNR

(6)

where WT is the time-bandwidth product of the narrowband
waveform, ω0 is the radian carrier frequency of the narrowband
waveform, and SNR is the pre-integration SNR at the receiver.
It is assumed here that T is short enough so that the effect
of any oscillator dynamics over the observation interval are
negligible. As an example, in the case of a pre-integration
SNR of 10 dB, bandwidth B = 50 MHz, waveform duration
T = 10 µs, and carrier frequency ω0 = 2π · 1 GHz, the
narrowband CRLB implies that RMS delay estimation errors
can be as small as approximately 4 ps. It was shown in
[33] that, by using a two-step maximum-likelihood estimator,
the narrowband CRLB could be achieved for these values of
system parameters. The experimental results reported in [34]
with similar signaling parameters in an outdoor environment
and with off-the-shelf hardware yielded RMS delay estimation
errors of less than 10 ps.
While the proposed timestamp-free synchronization pro-

tocol can be used by directly applying the offset estimates
calculated in (5) for local clock correction at each slave
node, better synchronization accuracy can be achieved through
repeated bidirectional exchanges with the master node and
filtering of the delay estimates. The filtering approach is also
natural in the context of the Gauss-Markov state space model
in (1). We assume that the observations at node n in timeslot
k are given by

δ̂n[k] = ∆n[k] + V [k] = hxn[k] + V [n] (7)

with h = [1, 0] and where V [k] ∼ N (0, R) represents the esti-
mation error with R specified according to (6), assumed to be
spatially and temporally independent, identically distributed,
and independent of the process noise un[k] for all n and k.
This observation model implicitly assumes that the observation
interval is short so that any frequency estimate gleaned from
carrier or symbol timing is not useful.
In timeslot k, the slave node n that performed a bidirectional

message exchange with the master node updates its state
predictions, state estimates, and the associated covariance
matrices with the usual Kalman filter update [35]. Denoting
state estimates and predictions at node n as x̂n[k|k] and
x̂n[k + 1|k], respectively, and the associated estimation and
prediction covariance matrices Σn[k|k] and Σn[k + 1|k], the



filter recursion is specified as

x̂n[k|k] = x̂n[k|k − 1] +Kn

(

δ̂n[k]− hx̂n[k|k − 1]
)

x̂n[k + 1|k] = f(T )x̂n[k|k]
Σn[k|k] = Σn[k|k−1]−Kn(hΣn[k + 1|k]h! +R)K!

n

Σn[k + 1|k] = f(T )Σn[k|k](f (T ))! +Q

with Kn = (Σn[k|k − 1]h!)/(hΣn[k + 1|k]h! + R) and
where f(T ) and Q are defined in (2) and (3), respectively.
The remaining N − 1 slave nodes update their state estimates
and predictions with Km = 0 for all m $= n since they do
not receive an observation.
Remark: The modulo and wrapping operations in (4) and (5)

imply that the observations received at node n are nonlinear
in the state xn[k], whereas we have assumed an observation
model in (7) that is linear (affine) in the state. The linear model
is reasonable, however, if the slave node clock offsets are small
with respect to the master node clock tick period T0. This
can be achieved either by making T0 large for initial message
exchanges or by having the master node initially broadcast
a single low-precision, e.g. 1 ms resolution, timestamp to all
of the slave nodes prior to commencing the timestamp-free
synchronization protocol.

V. NUMERICAL RESULTS

The numerical results in this section assume a network with
N = 10 slave nodes, i.i.d. Gaussian distributed initial clock
offsets∆n[0] with standard deviation 5 ms, and i.i.d. uniformly
distributed initial drifts ∆̇n[0] with maximum deviation of
±10 parts-per-million (ppm) for i = 1, . . . , N . The stochastic
oscillator parameters p and q were derived via a least-squares
fit from a table of typical Allan variance characteristics of a
“good” crystal oscillator in [36]. The master node clock period
T0 was set to 100 ms and the master/slave messaging period T
was set to 250 ms. The measurement error standard deviation√
R was set to 20 ps, consistent with the system parameters

in Section IV. In each iteration the slave node was chosen
randomly, with equal probability for each slave node.
Figure 2 shows one realization of the uncorrected clock

offsets at the 10 slave nodes in the system. In this case, since
the stochastic oscillator parameters were chosen based on a
“good” crystal oscillator and the duration of the simulation is
only 250 seconds, the clock offset trajectories are dominated
by the initial offsets and the ±10 ppm oscillator drifts.
To demonstrate the efficacy of simple timestamp-free syn-

chronization without filtering, Figure 3 shows corrected clock
offsets at the 10 slave nodes in the system using the timestamp-
free synchronization protocol. In this example, the clock
offset estimates at each slave node were directly applied to
correct the local clock without filtering. Each time a slave
node performs a bidirectional message exchange with the
master node, it accurately corrects is local offset but does not
correct its local drift. The effect of uncorrected local drift can
be seen in the approximately linear clock offset trajectories
in Figure 3, where nodes with larger rate offsets tend to
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Fig. 2. Uncorrected clock offsets example with different colors corresponding
to the clock offsets at different slave nodes.

have larger excursions from zero. Although the nodes are
synchronized to a precision better than 0.1 ms in this example,
the effect of uncorrected drift is evident in the steady-state
performance and would be exacerbated in systems with less
frequent master/slave message exchanges.
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Fig. 3. Corrected clock offsets example (no filtering).

To demonstrate the performance improvement that can be
achieved by filtering the offset estimates, Figure 4 shows
corrected clock offsets and drifts at the 10 slave nodes in
the system where each node locally filters the delay estimates
to infer and correct local drifts. Note the change of axis
units/limits with respect to Figure 3. Initially, the clock offsets
at each slave node are dominated by the initial offsets and the
uncompensated drifts, but after each slave node has received a
few offset estimates, it is able to infer and accurately correct
the initial offset and local drift. Offset correction in this case is
significantly improved with respect to Figure 3 with a standard



deviation of approximately 11 ps over the last 500 iterations of
the simulation. A small amount of residual drift is still evident
in these results, but the performance tends to be dominated by
the unpredictable stochastic dynamics of the local oscillators.
Drift compensation is also quite effective in this case with
corrected clock rates better than 0.01 parts-per-billion (ppb).
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Fig. 4. Corrected clock offsets example with filtering.

While the numerical results in this section are for a specific
realization of the clock process and measurement noises, they
are typical of the results obtained in our testing.

VI. CONCLUSION
This paper describes a new approach to master/slave net-

work synchronization that exploits the physical layer proper-
ties of narrowband wireless signals and a filtering framework
motivated by the state-space description of local oscillator
dynamics to achieve precise synchronization performance
without the exchange of timestamps. Since no timestamps
are exchanged, synchronization functions can be embedded
in existing network traffic. Also, since the protocol is based
on bidirectional message exchanges, it accounts for propaga-
tion delay and its accuracy is only limited by fundamental
estimation bounds. Our numerical results for timestamp-free
synchronization with local filtering show that synchronization
among the slave nodes can be achieved quickly and that the
resulting steady-state accuracy can be sufficient to support
distributed transmission techniques requiring carrier phase
alignment, e.g. virtual MIMO and/or distributed beamforming.
While this paper has shown that timestamp-free synchro-

nization can be effective in master/slave networks, an im-
portant extension of this work is to develop timestamp-free
synchronization protocols for general network architectures
including networks with multi-hop communication to a time
server. An analytical characterization of the achievable steady-
state performance of timestamp-free synchronization as a
function of the number of nodes in the network, local oscillator
parameters, and measurement noise parameters would also be

valuable toward understanding the effect of these parameters
on synchronization accuracy. Asymptotic results for large
networks are also of interest to understand the scaling laws
of these synchronization techniques.
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