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Abstract—This paper considers a distributed multi-input single-output

(MISO) communication system with two or more transmit nodes and a

single receive node. Each transmit node has an independent local oscilla-
tor and independent kinematics. The receive node periodically estimates

the combined time offset and propagation delay of each transmit node

and provides feedback to the transmit nodes to facilitate channel tracking
and prediction for coherent transmission and passband signal alignment.

In addition to the periodic time offset feedback, each receive node also

observes periodic measurements from a local accelerometer and uses

these measurements to improve the tracking performance. Continuous-
time and discrete-time models are developed for a system with one-

dimensional kinematics. Numerical results show that local accelerometer

measurements can significantly improve the performance of time offset
tracking, consequently improving coherence for distributed transmit

beamforming and distributed transmit nullforming and also potentially

allowing for reduced feedback rates with respect to the conventional

receiver-coordinated feedback-only approach.

Index Terms—distributed transmission, channel tracking, synchroniza-

tion, oscillator dynamics, kinematic compensation

I. INTRODUCTION

We consider the distributed multi-input single-output (MISO) com-

munication scenario in Fig. 1 where a transmission cluster with N
transmit nodes communicates with a single receive node. The transmit

cluster transmits as a virtual antenna array and uses coherent trans-

mission techniques, e.g., distributed transmit beamforming [1]–[5] or

distributed transmit nullforming [6]–[8]. We assume each node in

the system has an independent local oscillator and that no exogenous

synchronization signals are present. The receiver facilitates coherent

transmission by estimating the combined time offsets and propagation

delays and by providing periodic feedback to the transmit nodes.

transmit
nodes

receive
node

Fig. 1. Distributed MISO system model with N transmit nodes and one
receive node. Each node possesses a single antenna and an independent
oscillator.

Since each node in the distributed transmission system has an in-

dependent local oscillator and may experience independent kinematic

effects, the time offset and propagation delay between each transmit

node and the receive node is time-varying and must be tracked

This work was supported by the National Science Foundation awards CCF-
1302104 and CCF-1319458.

and predicted to facilitate passband signal alignment and coherent

transmission. Several recent papers have analyzed the performance

of distributed beamforming and distributed nullforming subject to

independent oscillator dynamics [5], [8]–[10]. Other than [5], this

prior work has primarily focused on the case when the propagation

channels are time-invariant or slowly-varying with respect to the

oscillator dynamics. Although kinematic effects were studied in [5],

the model did not account for the effect of acceleration on the

frequency of crystal oscillators as described in [11]. All of this prior

work assumed a conventional receiver-coordinated scenario in which

the effective channels are tracked using only periodic feedback from

the receive node.

This paper analyzes the performance of coherent distributed trans-

mission in a MISO system with independent clock dynamics and

time-varying propagation channels. Each propagation channel is

assumed to be single-path and its time variations are assumed to be

caused by independent kinematics at each transmit node. The receive

node is assumed to be stationary. Our analysis accounts for:

1) The effect of independent oscillators at each node in the system.

2) The effect of acceleration at transmit node i on the frequency

of the oscillator at node i [11].

3) The effect of displacement at transmit node i on the propagation

delay of signals from transmit node i to the receive node

We develop a continuous-time three-state model describing the com-

bined time offset and propagation delay, normalized rate/frequency

offset, and acceleration dynamics between transmit node i and the

receive node. This model is characterized by three parameters cor-

responding to the short-term oscillator stability, long-term oscillator

stability, and kinematic stability. The continuous-time model is then

discretized to facilitate tracking with a Kalman filter.

Numerical methods are used to compare the performance of

the MISO system in two scenarios: (i) the conventional receiver-

coordinated scenario where the combined time offsets and propaga-

tion delays are tracked only through periodic feedback of estimates

from the receive node and (ii) a scenario where, in addition to

the periodic time offset feedback, each receive node also observes

measurements from a local accelerometer. This could be achieved, for

example, by equipping each transmit node with an inertial measure-

ment unit (IMU). Both time offset feedback and local accelerometer

measurements are assumed to be periodic, but the local accelerometer

measurements are assumed to be available much more frequently than

feedback from the receive node. Numerical results show that local ac-

celerometer measurements can significantly improve the performance

of time offset tracking, consequently improving coherence for dis-

tributed transmit beamforming and distributed transmit nullforming

and also potentially allowing for reduced feedback rates with respect

to the conventional receiver-coordinated feedback-only approach.



II. SYSTEM MODEL

Each node in the system shown in Fig. 1 is assumed to possess

a single antenna. All forward link channels are modeled as single-

path with identical gain and the time-varying propagation delay of

the channel from transmit node i to the receive node is denoted as

ψi(t) with units of seconds for i = 1, . . . , N .

We assume a protocol in which each transmit node periodically

sends a sounding signal at known time (in the transmit node’s local

timebase) and the time-of-arrival of this signal is estimated at the

receive node (in the receive node’s local timebase). The receive

node estimates the combined time offset and propagation delay of

each of the transmit nodes and provides feedback to the transmit

nodes to facilitate channel tracking, passband signal alignment, and

distributed coherent transmission. As discussed in [5], [8]–[10], the

transmit nodes can use Kalman filters to optimally combine this

feedback with previously received feedback to generate minimum

mean squared error (MMSE) predictions and facilitate coherent

transmission between feedback updates.

The time-varying time offset and normalized rate/frequency offset

between transmit node i and the receive node (as observed at the

receive node) can be written as

δi,1(t) = xi,1(t) + ψi(t)− x0,1(t) (time offset) (1)

δi,2(t) = xi,2(t) + ψ̇i(t)− x0,2(t) (frequency offset) (2)

where xi,1(t) and xi,2(t) denote the clock offset and normalized

clock rate offsets at node i, respectively, both with respect to some

reference, and where we have adopted the convention that the receiver

is node 0. To be clear, the “time offset” δi,1(t) includes both the

relative clock offset xi,1(t)−x0,1(t) and the propagation delay ψi(t).
Similarly, the “frequency offset” δi,2(t) includes both the relative

clock rate offset xi,2(t) − x0,2(t) and propagation effects in ψ̇i(t).
The following sections develop dynamic models for each of the

constituent components in these expressions.

A. Clock Dynamics

The independent local oscillator at each node in the system behaves

stochastically, causing time variations the each effective channel from

transmit node i to the receive node. Based on the two-state models

in [12], [13], we can define the state of the oscillator at node i as

xi(t) =

[

xi,1(t)
xi,2(t)

]

(3)

where xi,1(t) is a time offset with units of seconds and xi,2(t) is a

rate or frequency offset with units of sec/sec (dimensionless), both

with respect to some nominal reference. The continuous-time state

update equation is given as

ẋi(t) =

[

0 1
0 0

]

xi(t) + ξi(t) (4)

where ξi(t) = [ξi,1(t), ξi,2(t)]
⊤ and where ξi,1(t) has units of

sec/sec (dimensionless) and ξi,2(t) has units of 1/sec. The white

process noise ξi(t) is distributed as

ξi(t) ∼ N (0,Q) (5)

with Q = diag(q1, q2) and with q1 a parameter with units of seconds

corresponding to the short-term stability of the oscillator and q2 a

parameter with units of 1/sec corresponding to the long-term stability

of the oscillator. We assume all oscillators in the system to have the

same q1 and q2 parameters. Typical values for short-term and long-

term stability parameters for different classes of oscillators can be

found in [14].

B. Effect of Acceleration on Oscillator Frequency

It is well-known that, due to the mechanical nature of crystal oscil-

lators, acceleration applied to a crystal oscillator causes a shift in the

oscillator frequency [11]. We assume this effect to be additive with

the frequency offsets caused by the non-kinematic clock dynamics as

described in the previous section.

To facilitate exposition, we assume the one-dimensional kinematic

model illustrated in Fig. 2. The displacement from node i to the

receiver is denoted as di(t) with units of meters. Denoting the

acceleration on node i is ai(t) = d̈i(t), the results in [11] imply

that the frequency offset caused by acceleration at node i can be

expressed as

xi,2(t) = γd̈i(t) = γai(t) (6)

where γ is the oscillator acceleration sensitivity parameter with units

of sec2/m. Typical values for the oscillator acceleration sensitivity

parameter are described in [11] and are usually on the order of

10−10 sec2/m. We assume γ is known although this parameter may

need to be estimated and/or calibrated in practice. Taking another

derivative, we can write

ẋi,2(t) = γȧi(t) = γji(t) (7)

where ji(t) is the derivative of the acceleration at node i sometimes

called the “jerk” [15].

transmit node i receive node

di(t)

Fig. 2. One dimensional kinematics model with time-varying displace-
ment di(t).

C. Effect of Displacement on Propagation Delay

Referring to Fig. 2 and assuming a single-path channel from

transmit node i to the receive node, the propagation delay from node i
to the receiver is given as

ψi(t) =
di(t)

c
(8)

where c is the speed of light. We can take two derivatives to write

ψ̈i(t) =
ai(t)

c
. (9)

This equation is consistent with the usual results for non-relativistic

Doppler shifts. We can further define the propagation state

zi(t) =

[

ψi(t)

ψ̇i(t)

]

. (10)

It follows that

żi(t) =

[

0 1
0 0

]

zi(t) +

[

0
1
c

]

ai(t). (11)

D. Complete Continuous-Time Model

We define the state

δi(t) =





xi,1(t) + ψi(t)− x0,1(t)

xi,2(t) + ψ̇i(t)− x0,2(t)
ai(t)



 . (12)

Note that the first and second terms of this state vector are the

time offset (seconds) and normalized rate/frequency offset (dimen-

sionless), respectively, of node i as observed at the receive node



through the time-varying propagation delay ψi(t). Unlike the time

and frequency offsets with respect to an unknown reference clock,

these offsets are observable.

Using the results from the previous sections, we can write

δ̇i(t) =





0 1 0
0 0 1

c

0 0 0



δi(t)+





1 0 −1 0 0
0 1 0 −1 γ
0 0 0 0 1









ξi(t)
ξ0(t)
ji(t)



 (13)

= Aδi(t) +Bηi(t) (14)

If we assume the kinematics follow a white-noise jerk model with

E[ji(t)ji(t+ τ )] = q3δ(τ ) where q3 has units of m2/sec5, then the

white process noise ηi(t) is distributed as

ηi(t) ∼ N (0, Q̄) (15)

with Q̄ = E[ηi(t)η
⊤

i (t)] = diag(q1, q2, q1, q2, q3).

E. Complete Discrete-Time Model

To facilitate tracking with a Kalman filter, this section derives a

discrete-time model from the continuous-time model developed in

the previous section. The continuous-time transition matrix can be

computed as

Φ(t) = eAt =





1 t t2

2c

0 1 t
c

0 0 1



 . (16)

Let T denote the sampling period. Using standard methods to convert

a continuous-time system to a discrete-time system, e.g., [16], we

have a discrete-time state update given as

δi[k + 1] = Φ(T )δi[k] + ui[k] (17)

with

ui[k] =

∫ (k+1)T

kT

Φ((k + 1)T − τ )Bηi(τ ) dτ. (18)

Note that ui[k] is Gaussian distributed with zero mean since it is

a linear function of ηi(τ ) which is Gaussian and zero mean. The

discrete-time process noise covariance matrix requires computing

C(T ) =

∫ T

0

Φ(T − τ )BQ̄B
⊤
Φ

⊤(T − τ ) dτ. (19)

Since

BQ̄B
⊤ =





2q1 0 0
0 2q2 + γ2q3 γq3
0 γq3 q3



 (20)

and

Φ(T − τ ) =





1 T − τ (T−τ)2

2c

0 1 T−τ
c

0 0 1



 (21)

it can be shown that

C(T ) =

∫ T

0

4
∑

ℓ=0

Xℓ(T − τ )ℓ dτ (22)

= X0T +X1
T 2

2
+X2

T 3

3
+X3

T 4

4
+X4

T 5

5
(23)

where each Xℓ is a symmetric 3×3 matrix that is only a function of

c, γ, q1, q2, and q3 (not a function of T or τ ). Some linear algebra

results in

X0 =





2q1 0 0
0 2q2 + γ2q3 γq3
0 γq3 q3



 , (24)

X1 =





0 2q2 + γ2q3 γq3
2q2 + γ2q3

2γq3
c

q3
c

γq3
q3
c

0



 , (25)

X2 =





2q2 + γ2q3
3γq3
2c

q3
2c

3γq3
2c

q3
c2

0
q3
2c

0 0



 , (26)

X3 =





γq3
c

q3
2c2

0
q3
2c2

0 0
0 0 0



 , and (27)

X4 =





q3
4c2

0 0
0 0 0
0 0 0



 . (28)

Hence, the discrete-time dynamics are fully characterized by the

initial state δi[0], the time-invariant state update matrix F = Φ(T ),
and the discrete-time process noise ui(t) ∼ N (0,C(T )) with

covariance C(T ) from (22)–(28).

F. Observation Model

At each sampling instant t = kT , transmit node i receives a noisy

observation of the acceleration state from its local accelerometer. At

less frequent sampling instances t = kTf with Tf =MT and M an

integer greater than one, transmit node i receives feedback from the

receive node corresponding to a noisy estimate of the time offset state.

We assume no estimates are made of the normalized rate/frequency

state. The feedback period is denoted as Tf . Assuming zero latency in

the feedback from the receive node, the observation model at node i
can be written as

yi[k] = H[k]δi[k] +wi[k] (29)

where

H[k] =























[

0 0 0

0 0 1

]

kT
Tf

is not an integer

[

1 0 0

0 0 1

]

kT
Tf

is an integer

(30)

and where wi[k] corresponds to measurement noise. It is reasonable

to assume the noise in the accelerometer measurements is indepen-

dent of the noise in the time offset estimates at the receive node.

Hence

wi[k] ∼ N (0,R) (31)

with R = diag(r1, r2). We assume these measurement noise

parameters are identical for all nodes in the system.

Note that the r1 measurement noise parameter specifies the vari-

ance of the time offset measurements at the receive node (which

are subsequently fed back over an error-free link to the transmit

nodes to facilitate tracking). It is well-known, e.g. [17, p.55], that

the Cramer-Rao lower bound (CRLB) for delay estimation of signals

observed in additive white Gaussian noise (AWGN) is inversely

proportional to the signal-to-noise ratio (SNR) and the mean squared

bandwidth of the signal. The analysis leading to this bound, however,

assumes a baseband signal is processed to estimate the time offset.

Weiss and Weinstein [18], [19] showed that passband signal delay

estimation performance also improves with carrier frequency when

the SNR exceeds a certain threshold. Intuitively, above this SNR

threshold, the presence of the carrier in the passband signal provides



additional detail in the correlator output that can be used to refine

delay estimates to a fraction of a carrier period.

As an example, in the case of a pre-integration SNR of 10 dB,

bandwidth B = 50 MHz, waveform duration T = 10 µs, and

carrier frequency ω0 = 2π · 1 GHz, the passband CRLB implies

that RMS delay estimation errors can be as small as approximately

4 ps. Experimental results reported in [20] with similar signaling

parameters in an outdoor environment and with off-the-shelf hardware

yielded RMS delay estimation errors of less than 10 ps.

The r2 measurement noise parameter specifies the variance of the

noise in the accelerometer measurements. We have assumed here a

simplified model for the accelerometer that ignores any amplitude

nonlinearities and/or bias effects. The value of r2 depends on ac-

celerometer noise specifications and the measurement bandwidth. As

an example, the Analog Devices ADXL103/ADXL203 accelerometer

datasheet [21] has a noise density specification of 110µg/
√
Hz. If

a single-pole anti-aliasing filter with bandwidth BW Hz is used to

limit the noise prior to sampling, the RMS accelerometer noise can

be calculated as [21]

RMSnoise ≈
(

110
µg√
Hz

)

(√
BW · 1.6

)

(

9.8 · 10−6m/s
2

µg

)

(32)

with units of m/s2 and where the factor of 1.6 is due to the rolloff of

the single-pole anti-aliasing filter. For example, with an accelerometer

sampling period of T = 0.01, we can set BW = 50 Hz and compute

RMSnoise ≈ 9.64× 10−3 m/s2. The r2 parameter then follows as

r2 = (RMSnoise)2. In this example, we have r2 ≈ 9.3 × 10−5 ≈
1× 10−4 m2/s4.

III. NUMERICAL RESULTS

In this section, we demonstrate the performance advantages of

using local accelerometer measurements to improve the effective

tracking performance and, consequently, improve the coherence of

the distributed transmission system. Table I lists the parameters for

all of the numerical results in this section.

TABLE I
PARAMETERS FOR NUMERICAL RESULTS.

Parameter Value Units Meaning

q1 10−22 sec oscillator short-term stability

q2 10−23 1/sec oscillator long-term stability

q3 4 · 10−2 m2/sec5 white noise jerk process
noise intensity

γ 10−10 sec2/m oscillator sensitivity to accel-
eration

r1 4 · 10−24 sec2 time offset measurement
noise variance

r2 10−4 m2/sec4 accelerometer measurement
variance

T 0.01 sec sampling period for
accelerometer measurements

Tf 0.50 sec sampling period for time off-
set measurements (feedback)

ω0 2π · 900 · 106 rad/sec nominal carrier frequency

The oscillator stability parameters were chosen to be similar to the

“good” XO parameters described in [14]. The white noise jerk process

noise intensity was chosen so that the changes in the acceleration over

the sampling period T were on the order of
√
Tq3 = 0.02 m/sec2.

The oscillator sensitivity parameter was chosen according to typical

values described in [11]. The measurement noise parameters depend

on various factors such as the integrated SNR and the quality of the

accelerometer. We have assumed here sufficient SNR so that the time

offset estimation performance follows the Weiss-Weinstein bounds

for passband signals [18], [19] and are on the order of picoseconds

as has been experimentally demonstrated in [22]. The accelerometer

measurement variance r2 was set according to the example calcu-

lation based on the ADXL103/ADXL203 accelerometer [21] in the

previous section.

Fig. 3 shows the tracking performance of a Kalman filter channel

tracker with and without local accelerometer observations using the

parameters in Table I at the 900 MHz nominal carrier frequency aver-

aged over 1000 independent realizations of the clock and kinematic

processes. These results are shown in RMS phase prediction error

(degrees) versus time. At times t = 0, 0.5, 1.0, . . . , the transmit node

receives feedback from the receive node and we see the RMS phase

prediction error is small when this feedback is received. In the case

without local accelerometer observations, the kinematics and clock

dynamics cause the phase predictions to quickly become inaccurate.

For the case with local accelerometer observations, the transmitters

use these observations (received at times t = 0, 0.01, 0.02, . . . )
to better predict the combined time offset and propagation delay

and reduce the RMS phase prediction error between feedback pe-

riods. While the local accelerometer measurements don’t account for

the clock dynamics, they do provide useful information about the

kinematic effects on the local clock frequency and changes in the

propagation delay.
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Fig. 3. RMS phase prediction error in degrees versus time with and without
local accelerometer observations.

Fig. 4 shows the beamforming gain of an N = 10 node distributed

beamformer with each transmit node in the system using a Kalman

filter to track and predict the effective channel dynamics. The perfor-

mance is compared with and without local accelerometer observations

using the parameters in Table I at the 900 MHz nominal carrier

frequency averaged over 1000 independent realizations of the clock

and kinematic processes and assume identical channel magnitudes

from each transmit node to the receive node. Under this assumption, it

has been shown [10] that the average beamforming gain with respect

to incoherent transmission is related to the variance of the phase



prediction errors according to

E[beamforming gain] = Ne−σ2
φ(tp) +

(

1− e−σ2
φ(tp)

)

(33)

where σ2
φ(tp) denotes the phase prediction variance at prediction

time tp from the last feedback update. In this case, since the ideal

beamforming gain of an N = 10 node array is 10 dB, these results

show that local accelerometer observations allow the distributed

transmit array to maintain performance almost indistinguishable from

an ideal beamformer for t > 0.5. If local accelerometer observations

are not available, the kinematic effects are poorly tracked and the

distributed array loses approximately 1 dB of beamforming gain just

prior to receiving a feedback update from the receiver.
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Fig. 4. Average beamforming gain with respect to incoherent transmission in
dB for an N = 10 node transmit cluster versus time with and without local
accelerometer observations.

Fig. 5 shows the nullforming gain of an N = 10 node distributed

beamformer with each transmit node in the system using a Kalman

filter to track and predict the effective channel dynamics under the

same assumptions as the previous results. The goal in this case is to

minimize the power at the receiver. Nullforming is used, for example,

in cognitive radio underlay networks to avoid interfering with primary

users [23]. In [10], it was shown that the average nullforming gain

with respect to incoherent transmission is related to the variance of

the phase prediction errors according to

E[nullforming gain] = 1− e−σ2
φ(tp). (34)

where σ2
φ(tp) denotes the phase prediction variance at prediction

time tp from the last feedback update. These results show that

accelerometer observations allow for nulls better than 20 dB below

incoherent transmission whereas a system without accelerometer

observations has nulls that are often less than 10 dB below incoherent

transmission. Intuitively, the large performance advantage of the

system with accelerometer observations in this example is due to

the fact that nulls tend to be more sensitive to phase prediction

errors than beams. By using local accelerometer measurements, the

variance of the phase prediction errors is significantly reduced and

the nullforming performance is significantly improved.

It is also of interest to understand how accelerometer measurements

can be used to reduce feedback overhead in distributed transmission

systems. Fig. 6 shows the achievable reduction in the feedback update
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Fig. 5. Average nullforming gain with respect to incoherent transmission in
dB for an N = 10 node transmit cluster versus time with and without local
accelerometer observations.

rate 1
Tf

of a system with accelerometer measurements achieving

equivalent performance of a conventional receiver-coordinated system

without accelerometer measurements. To be specific, we denote

the feedback rate with and without accelerometer measurements as
1

T
(wam)
f

and 1

T
(woam)
f

, respectively. For a fixed value of T (woam)

f , we

compute the performance of the conventional receiver-coordinated

system without accelerometer measurements by temporally averag-

ing the Kalman filter RMS phase prediction errors after the 20th

observation and before the 21st observation (similar results are

obtained by considering beamforming or nullforming gain as the per-

formance metric). Setting T (wam)

f = T (woam)

f and running the same

experiment on the system with accelerometer measurements results

in improved performance (reduced temporally-averaged RMS phase

prediction errors). Keeping the accelerometer measurement period

T = 0.01 fixed, we then decrease the feedback update rate 1

T
(wam)
f

until the system with accelerometer measurements achieves identical

performance to the conventional receiver-coordinated system without

accelerometer measurements with feedback update rate 1

T
(woam)
f

.

The results in Fig. 6 plot the reduction in the feedback rate
1/T

(woam)
f

1/T
(wam)
f

versus the feedback rate without accelerometer compen-

sation 1

T
(woam)
f

. For example, a value of two corresponds to the case

where the system with accelerometer compensation can achieve the

same performance as a system without accelerometer compensation

by reducing the feedback rate by a factor of two. These results show

how a system with accelerometer measurements can achieve the same

performance as a system without accelerometer measurements with

significantly less feedback overhead. Larger feedback rate reductions

occur in this example when the feedback rate in the conventional

receiver-coordinated system is low.

IV. CONCLUSION

This paper developed a model and analyzed the performance of

distributed coherent transmission in a MISO communication system

with time-varying propagation channels. The analysis accounted for

the effects of independent clock dynamics as well as the effects

of independent kinematics on the frequency of each transmit node
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Fig. 6. Reduction in feedback rate for a system with accelerometer measure-
ments achieving equivalent tracking performance of a conventional receiver-
coordinated system without accelerometer measurements. The accelerometer
measurement period was fixed at T = 0.01 seconds.

and the delay of each propagation channel. Two scenarios were

considered: (i) the conventional receiver-coordinated scenario where

the time offsets are tracked only through periodic feedback from the

receive node and (ii) an accelerometer-assisted scenario where, in

addition to the periodic time offset feedback, each receive node also

observes measurements from a local accelerometer. Numerical results

demonstrated that local accelerometer measurements can improve

the ability of each node to track its time offset with respect to

the receive node, consequently improving coherence for distributed

transmit beamforming and distributed transmit nullforming and also

allowing for reduced feedback rates with respect to the conventional

feedback-only approach.

The analysis in this paper was simplified by the one-dimensional

kinematics assumption as depicted in Fig. 2. In general, with two-

dimensional or three-dimensional kinematics, the orientation of the

accelerometer with respect to the sensitivity axis of the oscillator [11]

and the direction of the propagation channel may be unknown and

possibly time-varying. Since the orientation affects elements of the

state update matrix F and the process noise covariance C(T ), it is

critical to generate accurate estimates of these parameters to facilitate

optimal tracking and coherent transmission. Methods for accelerator

compensation with two-dimensional and three-dimensional kinemat-

ics would be an interesting extension to this work.
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