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ABSTRACT

This paper describes a network synchronization technique based

on bidirectional message exchanges between randomly chosen node

pairs without the use of timestamps. Each node in the network has

a clock with independent stochastic delay and drift. Relative delay

and drift synchronization information is conveyed implicitly in the

physical layer through the timing of responses to directed messages.

Simultaneous delay and drift correction is performed by the node

initiating the message exchange. Steady-state synchronization per-

formance bounds are developed as a function of the synchronization

stepsize parameter and the statistics of the delay and drift estimation

errors. Numerical results for two different connectivity scenarios

show that synchronization among the nodes can be achieved with-

out the overhead of digital timestamps, a dedicated synchronization

protocol, or network hierarchy.

Index Terms— synchronization, delay estimation, oscillator dy-

namics, ad hoc networks

1. INTRODUCTION

Clock synchronization is an important function in wireless networks

and can facilitate scheduling of communication resources, interfer-

ence avoidance, event detection/ordering, data fusion, and coordi-

nated wake/sleep cycles [1]. A variety of synchronization proto-

cols and systems have been developed for wired and wireless com-

munication networks over the last 30 years, e.g., [1–11]. A com-

mon theme running through most of these protocols and systems is

that they are based on a dedicated protocol with application-layer or

MAC-layer exchanges of digital timestamps between nodes in the

network. Digital timestamps inherently have a minimum resolution,

limiting accuracy, and (along with the use of a dedicated synchro-

nization protocol) add overhead to the network traffic. Hence, it is

of interest to study synchronization techniques that do not require

digital timestamps or a dedicated protocol.

Timestamp-free synchronization techniques were originally

studied in the context of natural phenomena and led to formal

mathematical models for systems of pulse-coupled oscillators

in [12, 13] and application of these models to wireless sensor net-

works in [14–16]. While these studies represented a paradigm

shift with respect to much of the prior work, a limitation of the

pulse-coupled oscillator literature is that it is based on unidirectional

transmissions and assumes negligible propagation delays. This

inherently limits the synchronization accuracy of these methods.

Timestamp-free synchronization techniques accounting for

propagation delays were developed in the context of retrodirec-

tive distributed transmit beamforming systems [17–21]. These
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techniques are generally based on serial exchanges of unmodulated

beacons through a network with a ring architecture and achieve

precise synchronization through estimation of RF carrier phase and

frequency offsets. A master-slave timestamp-free synchronization

protocol was also developed in [22]. This technique was based on

bidirectional message exchanges between a slave and the master

node with synchronization information conveyed implicitly in the

timing of the master node’s response. While all of these techniques

avoid the use of timestamps, the use of a dedicated synchronization

protocol and the establishment of a specific network architecture in

each case leads to undesirable overhead.

This paper extends the work in [22] by generalizing the idea

of timestamp-free synchronization from master-slave networks to ad

hoc networks with no network hierarchy. Bidirectional message ex-

changes between each transmitter/receiver pair are assumed to occur

randomly in the network in a fashion similar to “random asymmet-

ric gossip” [23–26]. In these papers, the convergence analysis and

numerical results assume ideal clocks with no stochastics, no es-

timation error, and separate drift and delay compensation. In this

paper, we extend [22, 26] by developing a timestamp-free synchro-

nization protocol that performs simultaneous drift/delay compensa-

tion, requires no network hierarchy, and accounts for clock stochas-

tics and estimation error. As in [22], our approach is to convey

implicit timing information in the physical layer through the tim-

ing of the message responses from the receiver to the transmitter.

Since no timestamps are exchanged and messages occur randomly

from the perspective of the synchronization system, synchronization

functions can be embedded in existing network traffic. Steady-state

synchronization performance bounds are developed as a function of

the synchronization stepsize parameter and the statistics of the delay

and drift estimation errors. Numerical results for two different con-

nectivity scenarios show that synchronization among the nodes can

be achieved without the overhead of digital timestamps, a dedicated

synchronization protocol, or network hierarchy.

2. SYSTEM MODEL

We assume a time-slotted time-division duplexed (TDD) network of

N nodes and denote the propagation delay from node i to node j as

τ (i,j). The duration of each timeslot is denoted as T and the timeslot

index is denoted as k. In each timeslot, a bidirectional message ex-

change occurs between a single transmit/receive pair. Since all of the

channels in the system are TDD, we assume reciprocal propagation

delays τ (i,j) = τ (j,i) in each link.

2.1. Probabilistic Pairwise Messaging

Since we assume no dedicated synchronization protocol, we specify

a transmit/receive probability matrix P [k] with i, jth entry pi,j [k]



corresponding to the probability that node i initiates a message ex-

change with node j in timeslot k. We assume throughout this pa-

per that P [k] ≡ P , i.e., the transmit/receive probabilities are con-

stant. The case pi,j = pj,i = 0 corresponds to the situation where

node i and node j do not communicate. Note that pi,i = 0 for all

i = 1, . . . , N and
∑

i

∑

j
pi,j = 1. We do not necessarily assume

pi,j = pj,i; for example, pi,j > 0 and pj,i = 0 corresponds to

the case where i initiates message exchanges with node j but node j
never initiates message exchanges with node i.

2.2. Local Clock Dynamics

The nodes in the network do not possess a common notion of time.

We will use the notation t to refer to a reference time, i.e. the “true”

time, in the system. All time-based quantities such as propagation

delays and/or frequencies are specified in reference time unless oth-

erwise noted.

None of the nodes have knowledge of the reference time t.
Based on the two-state models in [27], we define the discrete-time

state of the ith node’s clock at time t = kT as

xi[k] =
[

∆i[k], ∆̇i[k]
]

⊤

where ∆i[k] corresponds to the clock delay at node i with respect to

the reference time. The state update of the ith transmit node’s clock

is governed by

xi[k + 1] = F (T )xi[k] + ui[k] + ci[k] (1)

with state update matrix

F (T ) =

[

1 T
0 1

]

, (2)

process noise vector ui[k]
i.i.d.
∼ N (0,Qi(T )), and local clock cor-

rection vector ci[k] as described in Section 3. The process noise

vector captures the effect of stochastic phase noise in the ith node’s

local oscillator. The covariance of the discrete-time process noise is

derived from a continuous-time model in [27] and is given as

Qi(T ) = T

[

pi + qi
T2

3
qi

T
2

qi
T
2

qi

]

(3)

where pi (units of seconds) and qi (units of Hertz) are the pro-

cess noise parameters corresponding to white frequency noise and

random walk frequency noise, respectively. The process noise pa-

rameters pi and qi can be estimated by fitting the theoretical Allan

variance σ2
y(τ ) = pi/τ + qiτ/3 to experimental measurements of

the Allan variance over a range of τ values. For notational con-

venience hereafter we will assume all of the oscillators to have the

same process noise parameters such that pi = p and qi = q for all

i = 1, . . . , N .

2.3. Time Translation

To express the time of events in different timebases, we assume

the timeslot duration T is sufficiently short so that the local time

at node i can be written as

ti = t+∆i[k] + (t− kT )∆̇i[k] t ∈ [kT, (k + 1)T ). (4)

Given an interval [t(1), t(2)] ⊆ [kT, (k + 1)T ) with duration τ =
t(2) − t(1) specified in reference time, we can use (4) to express the

duration of the interval in local time at node i as

τi = (1 + ∆̇i[k])τ. (5)

Solving for t in (4), the local time at node j can also be related to the

local time at node i as

ti −∆i[k] + kT ∆̇i[k]

1 + ∆̇i[k]
=

tj −∆j [k] + kT ∆̇j [k]

1 + ∆̇j [k]
. (6)

This last expression implies an invertible mapping such that tj =
fi,j(ti) and ti = fj,i(tj).

3. TIMESTAMP-FREE NETWORK SYNCHRONIZATION

This section describes a time-slotted timestamp-free network syn-

chronization protocol that allows each node in the network to ar-

rive at a common clock drift and clock delay through pairwise mes-

sage exchanges with random neighbors. The goal is not to force

the drifts/delays to zero. Rather, the goal is to drive the clock drifts

and delays to a common value across the network so that the relative

drifts and delays between any pair of nodes are small. The protocol

described here is similar the timestamp-free protocol in [22] with

the main difference being that that the protocol described here is

non-hierarchical and does not require a master/slave configuration.

Fig. 1 shows the interactions between a pair of nodes denoted

as node i and node j. In timeslot k, these nodes are randomly se-

lected with probability specified by P . We assume the timeslots are

sufficiently short so that the clock states xi[k] and xj [k] are approx-

imately constant.
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Fig. 1. Timestamp-free synchronization bidirectional message ex-

change in timeslot k.

The protocol begins with node i transmitting a packet to node j
at arbitrary local time t(a)

i . We use the convention that a packet trans-

mission or reception time corresponds to the time at the center of the

packet as shown in Fig. 1. The packet arrives at node j at local time

t(b)j = fi,j(t
(a)

i ) + (1 + ∆̇j [k])τ
(i,j)

where τ (i,j) is the propagation delay from node i to node j and

the time-translation function fi,j from node i’s timebase to node j’s

timebase is implicit in (6). Node j’s estimate of the time of arrival

(in node j’s timebase) is then

t̂(b)j = t(b)j + ǫ(b)



where ǫ(b) ∼ N (0, R1) is the time-of-arrival estimation error.

Node j then transmits a reply back to node i at time t(c)j where t(c)j

is selected such that

t̂(b)j + t(c)j

2
= mjT0 (7)

where T0 is the nominal clock tick period (typically a large multiple

of the fundamental period of the local oscillator and a fraction of

timeslot period T ) and mj is an integer such that mjT0 > t̂(b)j . Note

that all quantities in (7) are in node j’s timebase. Also note that, in

the example shown in Fig. 1, the first clock tick after t̂(b)j is used as

the center point between t̂(b)j and t(c)j , but this is not required. Any

clock tick after t̂(b)j can be used as the center point.

Since the channel is reciprocal, node i receives the reply packet

from node j at local time

t(d)i = fj,i(t
(c)

j ) + (1 + ∆̇i[k])τ
(i,j).

Node i’s estimate of the time of arrival (in node i’s timebase) is then

t̂(d)i = t(d)i + ǫ(d)

where ǫ(d) ∼ N (0, R1) is the time-of-arrival estimation error and is

assumed to be independent of ǫ(b). Using only local times, node i
can then calculate the midpoint

t(e)i =
t(a)

i + t̂(d)i

2

and then compute the modulo relative clock offset

δ̂i,j = miT0 − t(e)i

where mi is the time of the local clock tick nearest to t(e)i . Note

that δ̂i,j serves as an estimate of the modulo relative clock offset

at node i with respect to node j, where a positive (negative) value

indicates that node i’s clock is lagging (leading) node j’s clock.

Assuming each node derives its carrier and/or symbol rate from

the same oscillator driving its local clock, node i can also estimate its

relative clock drift with respect to node j via carrier frequency offset

and/or symbol rate offset present in the reply packet from node j.

Denoting the relative clock drift estimate as

ν̂i,j [k] = ∆̇j [k]− ∆̇i[k] + η[k]

where η[k]
i.i.d.
∼ N (0, R2) is the relative drift estimation error as-

sumed to be independent of the time of arrival estimation errors,

node i then computes a clock correction vector as

ci[k] = µ

[

δ̂i,j [k]
ν̂i,j [k]

]

(8)

where µ > 0 is a stepsize that provides a tradeoff between conver-

gence speed and steady-state performance. Convergence conditions

on µ for separate drift/delay compensation in the absence of estima-

tion error are provided in [26].

In timeslot k, only node i and node j exchange messages. Only

node i performs clock correction based on the timing of node j re-

sponse. The clock correction vectors cℓ[k] = [0, 0]⊤ for all ℓ 6= i.
In subsequent timeslots, different i, j pairs are selected according

to the probabilistic pairwise messaging matrix P and the process

is repeated with only one node performing clock correction in each

timeslot.

4. STEADY-STATE PERFORMANCE ANALYSIS

In this section, we develop a bound on the achievable performance

of the time-stamp free synchronization protocol under the simplify-

ing assumptions that (i) there are only N = 2 nodes, (ii) node 1

always initiates bidirectional message exchanges with node 2, (iii)

the clocks of nodes 1 and 2 are sufficiently close so that modulo

effects can be ignored and (iv) oscillator stochastics are negligible

(u1[k] = u2[k] = [0, 0]⊤ for all k).

Under these assumptions, the clock correction vectors

c1[k] = µ(x2[k]− x1[k] + ǫ[k]), (9)

and c2[k] = [0, 0]⊤ for all k, hence we can use (1) to write the

relative clock offset and drift as

x1[k + 1]− x2[k + 1] = F (T )(x1[k]− x2[k]) + c1[k].

Denoting z[k] = x1[k] − x2[k] and using (9), we can express the

dynamics of the relative clock offset and drift between nodes 1 and 2

as

z[k + 1] = (F (T )− µI)z[k] + µǫ[k]

If µ is small enough so that a steady-state solution is achieved, we

have the steady-state relative offset and drift covariance

E
[

z[k + 1]z⊤[k + 1]
]

= E
[

z[k]z⊤[k]
]

= S

and

S = (F (T )− µI)S(F (T )− µI)⊤ + µ2
R (10)

where R = E
[

ǫ[k]ǫ⊤[k]
]

is the covariance of the delay and drift

measurement errors. Under the measurement error assumptions in

Section 3, it can be shown that R = diag(R1/2, R2). Since (10)

is a 2 × 2 discrete-time algebraic Riccati equation, a closed-form

solution for S can be straightforwardly calculated as

S =

[

2−2µ+µ2

(2−µ)3µ
T 2R2 +

µR1
2(2−µ)

(1−µ)TR2

(2−µ)2

(1−µ)TR2

(2−µ)2
µR2
2−µ

]

. (11)

The following section shows these steady-state synchronization per-

formance results, although developed for the N = 2 case under

ideal clock assumptions, can be good predictors of the steady-state

performance for general values of N and with stochastic clocks.

5. NUMERICAL RESULTS

The numerical results in this section assume a network with N = 10
nodes. The initial clock delays ∆i[0] were generated as i.i.d. zero-

mean Gaussian distributed random variables with standard devia-

tion 5 ms, and the initial drifts ∆̇i[0] were generated as i.i.d. uni-

formly distributed random variables on ±10 parts-per-million (ppm)

for i = 1, . . . , N . The stochastic oscillator parameters p and q were

derived via a least-squares fit from a table of typical Allan variance

characteristics of a “good” crystal oscillator in [28]. The nominal

clock period T0 was set to 100 ms and the messaging period T was

set to 250 ms. The standard deviation of each delay estimate was set

to 1 µs and the standard deviation of each relative drift estimate was

set to 0.01 ppm, i.e., R1 = 10−12 and R2 = 10−16. Delay and drift

estimation errors were assumed to be independent.



Fig. 2 shows the average behavior of the timestamp-free syn-

chronization protocol in a fully-connected network with equiproba-

ble transmit/receive pairs in terms of the standard deviation of the

clock offsets and drifts relative to node 10 for nodes 1, . . . , 9. The

results are averaged over 1000 realizations of the protocol for each

value of µ. In the first 100 timeslots, no clock corrections are per-

formed. Clock corrections are performed according to the protocol

in Section 3 in all of the subsequent timeslots. These results show

that the relative drifts and offsets converge to values close to the

lower bounds derived in Section 4 and that better steady-state per-

formance is achieved in this case with smaller values of µ.

0 100 200 300 400 500 600 700 800 900 1000
10

−4

10
−2

10
0

10
2

timeslot k

re
la

tiv
e 

cl
oc

k 
of

fs
et

s 
(m

s)

 

 

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

timeslot k

re
la

tiv
e 

cl
oc

k 
dr

ift
s 

(p
pm

)

 

 

µ = 0.2
µ = 0.5
µ = 0.95

µ = 0.2
µ = 0.5
µ = 0.95

Fig. 2. Standard deviation of relative clock offsets and drifts with

equiprobable transmit/receive pairs. The colored dashed lines are

from (10). The black dashed lines are the standard deviations of the

initial conditions.

We now consider the partitioned network with a gateway node

shown in Fig. 3. In this example, the N = 10 node network is par-

titioned into sets S1 = {1, 2, 3, 4, 5} and S2 = {5, 6, 7, 8, 9, 10}
where communication between members of the same set has proba-

bility pi,j = 1
50

and communication between members of different

sets has probability pi,j = 0.

1

2

3
4

5

6

7 8

9

10

Fig. 3. N = 10 partitioned network topology with node 5 serv-

ing as the gateway node. Each edge in the graph corresponds to a

transmit/receive pair with probability p = 1
50

in either direction.

Fig. 4 shows the average behavior of the timestamp-free syn-

chronization protocol in the partitioned network with a gateway node

shown in Fig. 3 in terms of the standard deviation of the clock off-

sets and drifts relative to node 10 for nodes 1, . . . , 9. Other than the

message probabilities and the number of timeslots, the simulation

parameters were otherwise identical to those in Fig. 2. These results

show that, although partitioned network tends to synchronize slower

than the fully-connected network, the relative drifts and offsets still

converge to values close to the lower bounds derived in Section 4.
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Fig. 4. Standard deviation of relative clock offset for the partitioned

network with a gateway node shown in Fig. 3. Note the change of

axis limits with respect to Fig. 2. The colored dashed lines are from

(10). The black dashed lines are the standard deviations of the initial

conditions.

6. CONCLUSIONS

This paper describes a new approach to network synchronization

that performs simultaneous delay and drift compensation, requires

no network hierarchy, and exploits the physical layer properties of

existing bidirectional messages in a wireless network to achieve syn-

chronization without the exchange of timestamps. Since no times-

tamps are exchanged, synchronization functions can be embedded in

existing network traffic. Also, since the protocol is based on bidirec-

tional message exchanges, it accounts for propagation delay and its

accuracy is only limited by the stochastic properties of the oscilla-

tors and the accuracy of the delay and drift estimates. Steady-state

synchronization performance bounds are developed as a function of

the synchronization stepsize parameter and the statistics of the delay

and drift estimation errors. Numerical results for two different con-

nectivity scenarios show that synchronization among the nodes can

be achieved without the overhead of digital timestamps, a dedicated

synchronization protocol, or network hierarchy.
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