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Abstract

This paper analytically derives exact expressions for the SINR of the two-stage linear parallel interference

cancellation (LPIC) and two-stage hard-decision parallel interference cancellation (HPIC) multiuser detectors

in a synchronous, nonorthogonal, binary, CDMA communication system with deterministic short spreading

sequences. We consider approximations to the SINR expressions that are justified in typical operating

scenarios to obtain a more intuitive understanding of the SINR performance of the HPIC detector. We

consider the case where a specific SINR requirement is given for each user in the system and derive expressions

for the set of transmit powers necessary to meet this requirement when two-stage LPIC or HPIC detection

is used. We also derive expressions for a measure of the theoretical system capacity using LPIC and HPIC

detection, defined as the maximum number of users possible in a system with finite available transmit power.

Numerical results are presented that compare the HPIC and LPIC detectors to the hard-decision successive

interference cancellation (SIC) detector and matched filter (MF) detector. Our results suggest that HPIC

detection may offer the best SINR and power efficiency performance when the number of users in the system

is low to moderate and that SIC detection may offer superior performance when the number of users in the

system is large.

I. Introduction

One promising technique for mitigating multiple access interference in CDMA communica-

tion systems is parallel interference cancellation (PIC). PIC was first introduced for CDMA

communication systems as the multistage detector by Varanasi and Aazhang in [1] and [2].

The multistage detector was shown to have close connections to the optimum maximum

likelihood detector and also to possess several desirable properties including the potential

for good performance, low computational complexity, and low decision latency.

The basic idea behind all PIC detectors is that, at a given stage, decision statistics for

the users in the system are formed by subtracting interference estimates (based on decision

statistics from the prior stage) from the original observation. What differentiates PIC de-

tectors is how the interference estimates are formed. Varanasi and Aazhang’s multistage

PIC detector uses the hard decisions at the output of stage m − 1 to form the interference

estimates used in stage m. More recently, Kaul and Woerner [3] proposed and analyzed

an alternative multistage PIC detector which uses the soft decisions at the output of stage

m − 1 to form the interference estimates used in stage m. A hard decision device is not

used until the final stage. Hybrid PIC detectors have also been proposed that use a linear



combination of both the hard and soft decision statistics [4]. Since the pioneering work of

Varanasi, Aazhang, Kaul, and Woerner, there has been an increased interest in understand-

ing the performance of the PIC detector (see, for instance, [5], [6], [7], [8], [9], [10], [11]).

For the remainder of this paper we will avoid notational confusion amongst PIC detectors

by denoting the Varanasi and Aazhang detector as the hard-decision PIC (HPIC) detector

and by denoting the Kaul and Woerner detector as the linear PIC (LPIC) detector.

Our contribution in this paper is an analysis of the signal to interference plus noise ratio

(SINR) performance of the HPIC and LPIC detectors. We present exact expressions for the

SINR of both the HPIC and LPIC detectors in the two-stage case and apply approximations

where appropriate to facilitate analytical results. The results derived in this paper also lead

to an analysis of the transmit power and theoretical system capacity performance of systems

operating with HPIC and LPIC detection. We consider the case where each user in the

CDMA communication system has a particular SINR requirement and derive an expression

for the minimum transmit powers necessary to satisfy these requirements. Note that, in

a nonorthogonal multiuser system such as CDMA, increasing one user’s transmit power to

meet their SINR requirement can also have the effect of increasing the interference seen by

the other users in the system, hence lowering their SINR. We show that, for fixed SINR

requirements and signature crosscorrelations, there exists a finite bound on the number of

users the system can support. If the number of users in the system exceeds this bound, the

total required transmit power is infinite. We call this bound the theoretical system capacity.

As a first step towards understanding the SINR performance of PIC, we derive expressions

for the total required transmit power and theoretical system capacity of LPIC and HPIC

detectors in the equicorrelated case where all users have identical signature sequence cross-

correlations. Due to the lack of closed form results for the HPIC detector, these expressions

are numerically compared to the results for SIC and MF detection provided in [12] under

identical assumptions. Our results suggest that

1. LPIC detection may offer only modest performance improvements with respect to single-

user MF detection in the cases considered and may actually degrade performance in some

cases.



2. HPIC detection offers significant performance improvements with respect to single-user

MF detection in the cases considered. HPIC detection tends to provide the best SINR and

power efficiency performance, with respect to the other multiuser detectors considered in this

paper, when the number of users in the system is somewhat less than the HPIC detector’s

system capacity.

3. SIC detection offers the best system capacity, with respect to the other multiuser detectors

considered in this paper, in the cases considered. Moreover, SIC detection tends to provide

the best SINR and power efficiency performance when the number of users in the system is

near, or greater than, the HPIC detector’s system capacity.

For the remainder of this paper we assume a synchronous CDMA multiuser communication

scenario with binary signaling, nonorthogonal transmissions, and an additive white Gaussian

noise channel. The communication system model is identical to the basic synchronous CDMA

model described in [13]. The number of users in the system is denoted by K and all detectors

considered in this paper operate on the K-dimensional matched filter bank output given by

the expression

yMF = RAb + σn (1)

where R ∈ R
K×K is a symmetric matrix of normalized user signature sequence crosscorre-

lations such that Rkk = 1 for m = 1, . . . , K and |Rk�| ≤ 1 for all k �= �, A ∈ R
K×K is a

diagonal matrix of positive real amplitudes, b ∈ B
K×1 is the vector of i.i.d. equiprobable bi-

nary user symbols where B = {±1}, σ is the standard deviation of the additive channel noise,

and n ∈ R
K×1 represents a matched filtered, unit variance AWGN process where E[n] = 0

and E[nn�] = R. The channel noise and user symbols are assumed to be independent.

II. SINR of Two-Stage PIC Detectors

Denote θ(k)

X as the SINR at the kth user’s output of multiuser detector X defined as

θ(k)

X
∆
=

E[y(k)

X | b(k)]2

var[y(k)

X | b(k)]

where y(k)

X denotes the kth user’s soft output from multiuser detector X prior to hard decision.

In the following sections, we evaluate this expression for the two-stage LPIC and HPIC



detectors in the case when the users’ spreading sequences are deterministic and known.

A. LPIC Detector

The two-stage LPIC detector forms the decision statistic for the kth user by the expression

y(k)

LPIC = a(k)b(k) +
∑
��=k

ρk�[a
(�)b(�) − y(�)

MF] + σn(k).

Since the LPIC detector is in fact a linear detector, it is more convenient to use matrix

notation to compute the SINR. Stacking the decision statistics into a K-dimensional vector,

we can write

yLPIC = yMF − (R − I)yMF.

Using the fact that E[yMF | b(k)] = b(k)RAek, it follows directly that

E
[
y(k)

LPIC | b(k)
]

= b(k)e�
k RAek − b(k)e�

k (R − I)RAek

= b(k)e�
k (2I − R)RAek

where ek is a the kth standard basis vector. The denominator of the SINR expression can be

computed similarly and the resulting SINR of the kth user’s decision statistic for the LPIC

detector may then be expressed without approximation as

θ(k)

LPIC =

(
e�

k (2I − R)RAek

)2
e�

k (2I − R)(RA2R + σ2R − RAeke�
k AR)(2I − R)ek

. (2)

We note that an expression for the SINR of the two-stage LPIC detector was derived in

[14] for the case of random spreading sequences. Algebraic manipulation of (2) yields an

alternative expression,

θ(k)

LPIC =
α(k)

(
2 − e�

k R2ek

)2∑
��=k α

(�)
(
e�

k (2I − R)Re�

)2
+ e�

k (2I − R)R(2I − R)ek

(3)

where α(�) = (a(�)/σ)2 is the signal to noise ratio (SNR) of the �th user. This last expression

will be useful for the subsequent analysis in this paper where we wish to compute the set of

SNRs {α(k)}K
k=1 that achieve a desired output SINR {θ(k)}K

k=1.



From the prior analysis, we note that the conditional mean of the LPIC detector’s decision

statistic shows a bias in the decision statistic equal to 2 − e�
k R2ek. This bias has also been

observed in [15] and [16] in the case of random spreading sequences. The relevance here is

that when e�
k R2ek > 2, the sign of E[y(k)

LPIC | b(k)] is not the same as that of b(k). In this case,

the SINR expressions above do not make sense since SINR is intuitively a measure of the ratio

of the decision statistic’s mean squared distance from the decision boundary to its variance.

When e�
k R2ek > 2, the mean distance from the decision boundary is actually negative and

hard decisions on these decision statistics will yield errors with probability greater than 1/2.

SINR analysis in this operating region in meaningless. This error probability behavior of the

LPIC detector was also discussed in [17] for the general M -stage LPIC detector.

B. HPIC Detector

The two-stage HPIC detector forms the decision statistic for the kth user by the expression

y(k)

HPIC = a(k)b(k) +
∑
��=k

ρk�a
(�) [b(�) − sgn(y(�))]︸ ︷︷ ︸
ε(�) ∈ {−2, 0, 2}

+σn(k).

The SINR of the HPIC detector may then be computed as

θ(k)

HPIC =

(
a(k)b(k) +

∑
��=k

ρk�a
(�)Ψ�

)2

∑
��=k

∑
m�=k

ρk�ρkma(�)a(m)Ω�m + 2σ
∑
��=k

ρk�a(�)Φ�k + σ2

where

Ψ� = E[ε(�) | b(k)],

Ω�m = E[ε(�)ε(m) | b(k)] − E[ε(�) | b(k)]E[ε(m) | b(k)], and

Φ�k = E[ε(�)n(k) | b(k)].

Exact expressions for Ψ, Ω, and Φ are given in the Appendix of this paper. Unfortunately,

the exact expression for the SINR of the two-stage HPIC detector is unwieldy and does not

lead to an intuitive understanding of its properties. Instead, we will impose the following

“normal-operating” assumptions also imposed in [12] and indirectly in [13, pp. 378]:



A1. Assume that decision errors at the matched filter output of user � are independent of

the bits transmitted by user k (ε(�) is independent of b(k) for all � �= k).

A2. Assume that decision errors at the matched filter output of user � are independent of

decision errors at the matched filter output of user m (ε(�) is independent of ε(m) for all

� �= m).

A3. Assume that decision errors at the matched filter output of user � are independent of

the noise component at the soft matched filter output of user k (ε(�) is independent of n(k)

for all � �= k).

The accuracy of these assumptions is verified numerically in Section V where the results

suggest that assumptions A1–A3 are well justified unless the error probabilities at the output

of the matched filter detector are high. When A1–A3 are appropriate, they imply that

Ψ� ≈ 0 ∀� �= k,

Ω�m ≈ 0 ∀(� �= k) �= (m �= k), and

Φ�k ≈ 0 ∀� �= k.

The remaining term requiring calculation is Ω�� which can be derived as

Ω�� = E[(ε(�))2 | b(k)] − E[ε(�) | b(k)]2

≈ E[(ε(�))2] − 0 = 4P (�)

MF(α,R)

where P (�)

MF(α,R) = P (b(�) �= sgn(y(�)

MF) |α,R) is the probability of error of the �th user’s

matched filter output as a function of the SNR vector α = [α(1), . . . , α(K)]� and the signature

sequence crosscorrelation matrix R. Under these approximations, the SINR of the HPIC

detector may then be written as

θ(k)

HPIC =
α(k)∑

��=k ρ
2
k�α

(�)4P (�)

MF(α,R) + 1
. (4)

An exact expression for the matched filter error probability P (�)

MF(α,R) is is given in [13,

pp. 113].



C. Equicorrelated Analysis

In this section, we develop additional intuition on the SINR behavior of the LPIC and

HPIC detectors by examining (3) and (4) under a particular case described by the following

assumptions:

A4. The signature crosscorrelations are all identical, i.e., ρk� = ρ for all k �= �, and

A5. The users’ output SINRs are all identical, i.e., θ(k) = θ for all k.

Under these assumptions, the symmetry of the LPIC and HPIC detectors implies that the

users’ SNRs are also all equal, i.e., α(k) = α for all k. Applying these assumptions and their

implications to (3), we can write

θLPIC =
α(1 − (K − 1)ρ2)2

α(K − 1)(K − 2)2ρ4 + 1 − (K − 1)ρ2 + (K − 1)(K − 2)ρ3
(5)

where we used the facts that

e�
k R2ek = 1 + (K − 1)ρ2,

e�
k (2I − R)Re� = −(K − 2)ρ2 ∀k �= �, and

e�
k (2I − R)R(2I − R)ek = 1 − (K − 1)ρ2 + (K − 1)(K − 2)ρ3.

Similarly, the SINR of the HPIC detector under assumptions A4–A5 can be computed as

θHPIC =
α

α(K − 1)ρ24PMF(α, ρ,K) + 1
(6)

where we used the fact that the symmetry of the matched filter detector implies that the

matched filter error probabilities are all equal, i.e., P (k)

MF(α,R) = PMF(α, ρ,K) for all k.

The SINR expressions of (5) and (6) offer more intuition about the behavior of the LPIC

and HPIC detectors than the general expressions developed in (3) and (4). An intuitively

satisfying property that can be observed by inspection of (5) and (6) is that, for fixed α and

ρ �= 0, increasing K causes both detectors’ SINRs to decrease to zero. A more interesting

property can be observed by considering the case where K and ρ are fixed and α → ∞. This

case represents the asymptotic SINR with infinite transmit power and represents an upper

bound on the achievable SINR with finite transmit power. In this case,

lim
α→∞

θLPIC =
(1 − (K − 1)ρ2)2

(K − 1)(K − 2)2ρ4
(7)



and

lim
α→∞

θHPIC =
1

(K − 1)ρ24 lim
α→∞

PMF(α, ρ,K)
. (8)

Remark 1: If K > 2 and ρ �= 0, (7) shows that the LPIC detector’s asymptotically achievable

SINR is finite. When K = 2, the two-stage LPIC detector is actually the decorrelating

detector [13] and the asymptotically achievable SINR is infinite.

Remark 2: Under the same assumptions, (8) shows that the asymptotically achievable SINR

of the HPIC detector is infinite if and only if lim
α→∞

PMF(α, ρ,K) = 0. Under assumptions

A4–A5, this corresponds to the case when (K − 1)|ρ| < 1.

III. Power Efficiency

In this section, we use the results developed in the prior section to solve the following

problem for LPIC and HPIC multiuser detectors: Given a set of K users with SINR re-

quirements {θ(k)}K
k=1 and signature sequence crosscorrelation matrix R, determine a set of

transmit SNRs {α(k)}K
k=1 that satisfy the requirements. Note that simply increasing any one

user’s power to allow that user to meet their individual SINR requirement will cause the

SINRs of other users in the system to decrease due to the nonorthogonal multiple access

interference. We proceed first with the general (not equicorrelated) case.

A. LPIC Detector

Defining Θ = diag(θ(1), . . . , θ(K)) and α = [α(1), . . . , α(K)]�, direct algebraic manipulation

of (3) allows us to write

Dα = Θ [Qα + v]

where D is a diagonal matrix with kkth element equal to
(
2 − e�

k R2ek

)2
, Q is a symmetric

matrix with zeros on its diagonal and with k�th element equal to
(
e�

k (2I − R)Re�

)2
, and v

is a vector with kth element equal to e�
k (2I − R)R(2I − R)ek. Solving for α, we can write

α = [D − ΘQ]−1Θv. (9)

If the inverse exists in (9) then there is a unique solution for the set of users’ SNRs {α(k)}K
k=1

required by the LPIC detector to meet the set of target output SINRs {θ(k)}K
k=1.



B. HPIC Detector

Defining Θ and α as in the prior section, we can use (4) to write

[
I − 4Θ(Γ − I)P MF(α,R)

]
α = Θe (10)

where P MF(α,R) is the diagonal matrix with the ��th element equal to P (�)

MF(α,R), Γ is

the symmetric matrix of squared signature crosscorrelations with �kth element equal to ρ2
�k,

and e is a K-vector with all elements equal to one. Unlike the LPIC detector, the HPIC

detector’s SNR requirements are not expressible in closed form due to the dependence of

the matched filter detector’s error probability on α. Numerical solution techniques are

required, in general, to determine the set of SNRs {α(k)}K
k=1 satisfying the target output

SINR specification {θ(k)}K
k=1.

C. Equicorrelated Analysis

Under assumptions A4–A5, we can solve (5) for α to write

α =
θ [1 − (K − 1)ρ2 + (K − 1)(K − 2)ρ3]

(1 − (K − 1)ρ2)2 − (K − 1)(K − 2)2ρ4θ
(11)

for the LPIC detector. Similarly, solving (6) for α, we can write

α =
θ

1 − 4(K − 1)θρ2PMF(α, ρ,K)
(12)

for the HPIC detector. The symmetry of the LPIC and HPIC detectors under assumptions

A4–A5 implies that the total SNR requirement, defined as
∑K

k=1 α
(k), is equal to Kα in both

cases.

Remark 1: If ρ �= 0 and θ > 0, (11) shows that as K increases, the denominator will decrease

and begin to be dominated by the −ρ4θK3 term. In fact, it can be shown there is positive

upper bound on K such that all K greater than this bound will cause the denominator to be-

come negative. The same is true for the HPIC detector in (12) since limK→∞ PMF(α, ρ,K) �= 0

unless ρ = 0. These results suggest the intuitively satisfying property that, given a non-zero

SINR requirement θ and non-zero signature correlations ρ, increasing K results in increasing

α and that there is a finite upper bound on K for both detectors such that α < ∞.



Remark 2: As was the case in (10), solutions to (12) for α require numerical methods in

general due to the dependence of the matched filter detector’s error probability on α. Nev-

ertheless, this expression is easier to solve than (10) since it is a single nonlinear equation

with a scalar valued parameter α rather than a set of simultaneous nonlinear equations with

the vector valued parameter α.

IV. System Capacity

In this section, we use the results developed in the prior sections to solve the following

problem for LPIC and HPIC multiuser detectors: Suppose that, for each K = 1, 2, . . . , a set

of output SINR requirements {θ(k)}K
k=1 and a signature crosscorrelation matrix RK are given.

Determine the maximum K such that the output SINR requirements can be achieved with

a set of finite transmit SNRs {α(k)}K
k=1. The solution to this problem can be considered the

theoretical system capacity of the multiuser detector since it specifies the total number of

users that can be accommodated by the multiuser detector under the finite transmit power

constraint.

We will proceed directly to the equicorrelated analysis in this section since the results for

the general case do not provide much useful intuition.

A. LPIC Detector Equicorrelated Analysis

To compute the theoretical system capacity for the LPIC detector, we will use the result

in (7) which states that

θLPIC <
(1 − (K − 1)ρ2)2

(K − 1)(K − 2)2ρ4

for finite α. Manipulation of this expression yields the desired inequality specifying the upper

bound on K as

(K − 1)3 +

(
−2 − 1

θLPIC

)
(K − 1)2 +

(
1 +

2

ρ2θLPIC

)
(K − 1) − 1

ρ4θLPIC
< 0. (13)

It is possible to compute the roots of (13) explicitly by using the cubic equation solutions

found in [18], however, the roots are quite complicated in most cases and do not yield much

intuition. Given values for θLPIC and ρ, numerical solutions to this expression are easy to

obtain and are presented in Section V.



It is also possible to derive a useful upper bound on the theoretical system capacity of

the LPIC detector using an alternate approach. Observe that when 2− e�
k R2ek = 0 in (3),

there exists no choice for α(k) that achieves any positive desired SINR. In the equicorrelated

case, this condition implies that 1− (K − 1)ρ2 must be greater than zero which leads to an

upper bound on the theoretical system capacity of the two-stage LPIC detector of

K − 1 <
1

ρ2
. (14)

B. HPIC Detector Equicorrelated Analysis

The theoretical system capacity of the HPIC detector can be derived from (8). For finite

α, (8) implies that

θHPIC <
1

(K − 1)ρ24 lim
α→∞

PMF(α, ρ,K)
.

An upper bound on K can then be written as

(K − 1) lim
α→∞

PMF(α, ρ,K) <
1

4ρ2θHPIC
. (15)

Remark 1: Due to the dependence of the matched filter error probability on K, a closed

form expression is not available for the theoretical system capacity of the HPIC detector.

Nevertheless, numerical methods can be used to find the maximum K satisfying (15) or

simple brute force techniques can be used to evaluate the left hand side of (15) for increasing

integer values of K until it exceeds the right hand side.

Remark 2: As shown in Section V, the approximations used to derive (4) result in SINR

expressions that tend to be somewhat optimistic when K is large. Hence, (15) should be

considered an upper bound on the system capacity of the two-stage HPIC detector.

V. Numerical Results

A. Accuracy of HPIC SINR Approximations

The first numerical result in this section considers the accuracy of the approximate HPIC

detection SINR results developed in (4) with respect to the exact expression for the HPIC

detector’s SINR as derived in the Appendix. To simplify the computations, we impose as-

sumptions A4–A5 with signature sequence correlations set to ρ = 1/8 and users’ SNRs set to



10 log10(α) = 10dB. Two-dimensional Gaussian quadrature numerical integration techniques

are used to evaluate the exact expression for the HPIC detector’s SINR over all integer val-

ues of K between 2 and 16. Two approximations for the HPIC SINR, both based on (6)

but with different expressions for PMF(α, ρ,K), are also plotted for comparison. The first

approximation, entitled “approx 1” uses the exact expression for the matched filter error

probability given in [13, pp. 113]. The second approximation, entitled “approx 2” uses a

Gaussian approximation on the matched filter error probability, i.e.,

PMF(α, ρ,K) ≈ Q
(√

θMF

)
= Q

(√
α

(K − 1)ρ2α+ 1

)
,

in the equicorrelated case. Although this approximation for the matched filter error probabil-

ity is often inaccurate and should be used with caution, Figure 1 shows that the two approx-

imations for the HPIC detector’s SINR are nearly indistinguishable in this case. Moreover,

both approximations tend to be highly accurate with respect to the exact SINR expression

for values of K ≤ 10. The approximate SINR expressions become less accurate and begin to

yield increasingly optimistic values for the HPIC detector’s SINR when the matched filter

error probability exceeds 2E-2 at values of K > 10 in this example.
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Fig. 1. Comparison of exact and approximate SINR expressions for the HPIC detector.



Figure 2 shows the HPIC detector’s output distributions obtained by simulation for

K ∈ {4, 8, 12, 16} under the same equicorrelated operating conditions as the prior numerical

example. The experimentally obtained output distributions are compared with the Gaus-

sian distributions predicted by the exact and approximate SINR analysis in Section II-B.

The theoretical and experimental results closely agree and, as seen in the prior numerical

example, the approximate HPIC analysis tends to lose accuracy at larger values of K. These

results also demonstrate the applicability of the SINR measure to the HPIC detector. Re-

cent results for a large class of linear multiuser detectors (including the LPIC detector) have

theoretically justified the use of the SINR measure in certain operating scenarios [19]. No

such results currently exist for nonlinear multiuser detectors, hence it is not immediately

clear in which cases, if any, the SINR measure is appropriate for the HPIC detector. These

results experimentally suggest that the output distribution of the HPIC detector may tend

to be at least near-Gaussian in some cases, including the equicorrelated case considered here,

and that the SINR measure for the HPIC detector is justified in these cases.
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Fig. 2. Comparison of HPIC detector’s output distributions obtained by simulation with Gaussian distributions

predicted by exact and approximate SINR analysis.



B. Multiuser Detector Performance Comparisons

B.1 SINR Comparisons

This section compares the SINR performance of the LPIC and HPIC detectors with with

the MF and SIC results given in [12] under assumption A4 and the assumption that the users’

SNRs are also equal. Specifically, the SINR expressions for the LPIC and HPIC detector

developed in (5) and (6), respectively, are plotted against the SINR expression for the MF

detector, given as

θMF =
α

(K − 1)ρ2α+ 1

and the SINR expression for the hard-decision SIC detector developed in [12], given as

θ(k)

SIC =
α

4
∑k−1

�=1 ρ
2αP (�)

SIC + (K − k)ρ2α+ 1

where P (�)

SIC is the probability of error in the �th detected user and is approximated as P (�)

SIC ≈
Q

(√
θ(�)

SIC

)
. Since the output SINRs of the SIC detector are different for each user under

the assumptions of the simulation, the arithmetic and geometric means of the SIC detector’s

output SINR are computed for comparison with the other multiuser detectors. The results

are plotted in Figures 3 and 4.
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Figure 3: Multiuser detector output SINR

comparison for 10 log10(α) = 10dB and ρ =

1/8.
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Figure 4: Multiuser detector output SINR

comparison for 10 log10(α) = 25dB and ρ =

1/8.



The results show that the HPIC detector exhibits the best performance of the tested

multiuser detectors in the equicorrelated case and that the LPIC detector tends to perform

very poorly for large values of K. The SIC detector exhibits better performance than the

matched filter detector but does not perform as well as the HPIC detector in these examples.

The accuracy results of the prior section suggest that it is reasonable to expect that the HPIC

detector’s output SINR, as plotted in Figures 3 and 4, is accurate for low to moderate values

of K but may be somewhat optimistic at large values of K. The SINR results for the SIC

detector, presented in [12], were developed under the same assumptions as A1–A3 in this

paper, hence it is also reasonable to expect that the SIC detector’s SINR is accurate for low

to moderate values of K but may be optimistic at large values of K.

B.2 Power Efficiency Comparisons

This section compares the power efficiency of the LPIC and HPIC detectors with with the

MF and SIC results given in [12] under assumptions A4–A5. The required SNR expressions

for the LPIC and HPIC detectors developed in (11) and (12) are summed over all K users in

the system and are plotted against the total required SNR expression for the MF detector,

given as

K∑
k=1

α(k)

MF =
Kθ

1 − (K − 1)ρ2θ

and the total required SNR expression for the hard-decision SIC detector developed in [12],

given as

K∑
k=1

α(k)

SIC =
νK − 1

ρ2(1 − 4PSICνK)
(16)

where ν = 1+ρ2θ
1+4PSICθρ2 and PSIC = Q(

√
θ) is the (identical) probability of error for each detected

user of the SIC detector. We note that (16) is simplified but equivalent to the expression

developed in [12]. Unlike the results of the prior section where the users were assumed to

be transmitting at equal SNRs, imposing assumption A5 here causes the SIC detector to

behave differently than the MF, LPIC, and HPIC detectors. Specifically, the MF, LPIC,



and HPIC detectors require the users to transmit at equal SNRs to achieve equal output

SINRs in the equicorrelated case, whereas the SIC detector requires the users to transmit at

disparate SNRs to achieve equal output SINRs. In all cases, the results shown in this section

represent the total power (with respect to the AWGN variance) required by the multiuser

detector to meet the output SINR specification. Assumption A5 implies that all users in the

system will have identical error probability for the SIC detector, hence P (�)

SIC = PSIC for all �.
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Figure 5: Multiuser detector required SNR

comparison for 10 log10(θ) = 10dB and ρ =

1/8.
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Figure 6: Multiuser detector required SNR

comparison for 10 log10(θ) = 20dB and ρ =

1/16.

The results in Figures 5 and 6 show that the HPIC detector exhibits better power efficiency

than the other detectors, in the equicorrelated case with equal output SINRs, until K reaches

a point where the matched filter decisions from the first stage become unreliable. At this

point, the HPIC detector’s power efficiency becomes poor and the system capacity of the

HPIC detector is reached shortly thereafter. The SIC detector has relatively low power

efficiency at smaller values of K but, as K approaches the value corresponding to the system

capacity of the HPIC detector, the SIC detector begins to exhibit better power efficiency

than the HPIC detector. The LPIC detector performs better than the matched filter and

SIC detectors for small K but reaches its system capacity well before the SIC and HPIC

detectors.

Unlike the results of the prior section where the HPIC detector performed better than the



SIC detector in all tested cases, this section shows that the SIC detector can outperform the

HPIC detector in terms of power efficiency when K is large. The reason for this behavior is

that the SIC detector, in Figures 5 and 6, selects a set of user SNRs that are disparate to

achieve a set of equal output SINRs. The results shown in Figures 3 and 4 assumed equal

SNRs which forced the SIC detector have disparate output SINRs. These results confirm

the widely held notion that SIC detection may perform better than PIC detection when the

user powers are disparate, but also suggest that PIC detection, particularly HPIC, may offer

better power efficiency when the system is not operating near capacity.

B.3 Theoretical System Capacity Comparisons

This section compares the theoretical system capacity of the LPIC and HPIC detectors

with with the MF and SIC results given in [12] under assumptions A4–A5. Numerical

solutions to the system capacity expressions for the LPIC and HPIC detectors developed in

(13) and (15) are are plotted against the theoretical system capacity of the MF detector,

given as

K <
1

ρ2θ
+ 1

and the theoretical system capacity expression for the hard-decision SIC detector developed

in [12], given as

K <
− log(4PSIC)

log ν
(17)

where PSIC and ν are as defined in the prior section. We note that (17) is simplified but

equivalent to the expression developed in [12].
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Figure 7: Multiuser detector system capacity

comparison for 10 log10(θ) = 10dB.
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Figure 8: Multiuser detector system capacity

comparison for 10 log10(θ) = 20dB.

The results in Figures 7 and 8 show that the SIC detector exhibits better system capacity

performance in the equicorrelated case given an SINR target equal for all users. The dif-

ference is more pronounced at higher SINRs and as ρ → 1. The HPIC detector’s system

capacity is also good in these cases but, unlike the SIC detector, decreases to zero as ρ → 1.

The LPIC and MF detectors both performed relatively poorly in these examples with the

LPIC detector performing worse than the MF detector when ρ is small and for low target

SINRs. These results also confirm the results of the prior section where the SIC detector

exhibited higher SNR requirements at low values of K but reached its system capacity at

higher values of K than the HPIC detector.

VI. Conclusions

In this paper we derived expressions for the SINR of the LPIC and HPIC detectors and

examined the implications on power efficiency and theoretical system capacity. In the case

where all users have the same SINR requirement and where the signature crosscorrelations

are identical between all users, we presented numerical results that suggest that the HPIC

detector exhibits the best SINR performance, with respect to the LPIC, MF, and hard-

decision SIC detectors, when the number of users in the system is somewhat less than the

system capacity of the HPIC detector. The results suggest that LPIC detection typically

offers only modest performance improvements in the cases considered and may actually



degrade performance in some cases. The results also suggest that SIC detection offers the

greatest system capacity in the cases considered and exhibits the best SINR performance

when the number of users in the system is near, or greater than, the system capacity of the

HPIC detector.

Appendix: Exact HPIC SINR Expressions

In this Appendix, we present the exact expressions for the terms used to calculate the

SINR of the HPIC detector in Section II-B.

A. Ψ� for � �= k

Recall that Ψ� = E[b(�)− sgn(y(�)) | b(k)]. Since the users’ bits are assumed independent and

zero mean then Ψ� = −E[sgn(y(�)) | b(k)]. Conditioning temporarily on all of the users’ bits,

we can write

E[sgn(y(�)) | b] = P (y(�) > 0 | b) − P (y(�) < 0 | b)
= Q

(−r�
� Ab

σ

)
−
(
1 −Q

(−r�
� Ab

σ

))

= 1 − 2Q

(
r�

� Ab

σ

)

where we have used the facts that y(�) = r�
� Ab+σn(�) and Q(x)+Q(−x) = 1. To remove the

conditioning on b, first denote B(k) as the set of cardinality 2K−1 of all possible, equiprobable,

binary K-vectors with the kth user’s bit fixed to the known value b(k). Then it follows that

E[sgn(y(�)) | b(k)] =
1

2K−1

∑
b∈B(k)

(
1 − 2Q

(
r�

� Ab

σ

))

= 1 − 1

2K−2

∑
b∈B(k)

Q

(
r�

� Ab

σ

)

and Ψ� follows directly.



B. Ω�m for (� �= k) �= (m �= k)

Recall that

Ω�m = E[(b(�) − sgn(y(�)))(b(m) − sgn(y(m))) | b(k)] − Ψ�Ψm

= E[b(�)b(m) | b(k)] − E[b(�)sgn(y(m)) | b(k)] − E[b(m)sgn(y(�)) | b(k)] +

E[sgn(y(�))sgn(y(m)) | b(k)] − Ψ�Ψm.

Since the users’ bits are assumed independent and zero mean, E[b(�)b(m) | b(k)] = 0. To compute

E[b(�)sgn(y(m)) | b(k)], we can temporarily condition on b to use a prior result in this Appendix

to write

E[b(�)sgn(y(m)) | b] = b(�)

[
1 − 2Q

(
r�

mAb

σ

)]
.

Now, removing the conditioning on b, we can write

E[b(�)sgn(y(m)) | b(k)] =
1

2K−1

∑
b∈B(k)

b(�)

[
1 − 2Q

(
r�

mAb

σ

)]

=
−1

2K−2

∑
b∈B(k)

b(�)Q

(
r�

mAb

σ

)
.

An expression for E[b(m)sgn(y(�)) | b(k)] can be derived similarly.

The remaining term required to compute Ω�m is E[sgn(y(�))sgn(y(m)) | b(k)]. Temporarily

conditioning on all of the users’ bits, we can write

E[sgn(y(�))sgn(y(m)) | b] = +P ({y(�) > 0} ∩ {y(m) > 0} | b)
+P ({y(�) < 0} ∩ {y(m) < 0} | b)
−P ({y(�) > 0} ∩ {y(m) < 0} | b)
−P ({y(�) < 0} ∩ {y(m) > 0} | b).

Using the notation of [18, pp. 936], where

L(h, k, ρ)
∆
=

∫ ∞

h

∫ ∞

k

g(x, y, ρ) dy dx



where g(x, y, ρ) is the bivariate Gaussian pdf parameterized by ρ, it can be shown that

E[sgn(y(�))sgn(y(m)) | b] = +L

(−r�
� Ab

σ
,
−r�

mAb

σ
, ρ�m

)

+L

(
r�

� Ab

σ
,
r�

mAb

σ
, ρ�m

)

−L
(−r�

� Ab

σ
,
r�

mAb

σ
,−ρ�m

)

−L
(

r�
� Ab

σ
,
−r�

mAb

σ
,−ρ�m

)
∆
= M

(
r�

� Ab

σ
,
r�

mAb

σ
, ρ�m

)
.

Now, removing the conditioning on b, we can write

E[sgn(y(�))sgn(y(m)) | b(k)] =
1

2K−1

∑
b∈B(k)

M

(
r�

� Ab

σ
,
r�

mAb

σ
, ρ�m

)

from which Ω�m follows directly. Note that there is no closed form expression for L(h, k, ρ)

except in special cases. Computation of E[sgn(y(�))sgn(y(m)) | b(k)] will, in general, require

numerical integration.

C. Ω�� for � �= k

The results from the prior section of this appendix can be applied directly to this case,

recognizing that E[(b(�))2 | b(k)] = E[(sgn(y(�)))2 | b(k)] = 1. We can then write

Ω�� = 2 +
1

2K−3

∑
b∈B(k)

b(�)Q

(
r�

� Ab

σ

)
− Ψ2

� .

D. Φ�k for � �= k

In order to derive an exact expression for Φ�k we will state a useful result first. Suppose

that u and v are unit variance, zero mean, Gaussian random variables and that E[uv] = ρ.

Then it can be shown via direct integration that

E[usgn(t+ v) | t] =
2ρ√
2π

exp

(−t2
2

)
. (18)

Recall that Φ�k = E[(b(�) − sgn(y(�)))n(k) | b(k)]. Since the users’ bits and channel noise are

assumed independent and zero mean, then Φ�k = −E[sgn(y(�))n(k) | b(k)]. Conditioning tem-

porarily on all of the users’ bits, and recognizing that sgn(y(�)) = sgn(y(�)/σ) for σ �= 0 then



we can use (18) to write

E[sgn(y(�))n(k) | b] =
2ρ�k√
2π

exp


−

(−r�
� Ab

σ

)2

2


 .

The conditioning on b is removed as before to write

E[sgn(y(�))n(k) | b(k)] =
ρ�k√
2π2K−2

∑
b∈B(k)

exp
(−(r�

� Ab)2

2σ2

)

and Φ�k follows directly.



References

[1] M. Varanasi and B. Aazhang, “Multistage detection in asynchronous code-division multiple-access communica-

tions,” IEEE Transactions on Communications, vol. 38, pp. 509–19, April 1990.

[2] M. Varanasi and B. Aazhang, “Near-optimum detection in synchronous code-division multiple-access systems,”

IEEE Transactions on Communications, vol. 39, pp. 725–36, May 1991.

[3] A. Kaul and B. Woerner, “Analytic limits on the performance of adaptive multistage interference cancellation,”

Electronics Letters, vol. 30, pp. 2093–4, December 1994.

[4] D. Divsalar, M. Simon, and D. Raphaeli, “Improved parallel interference cancellation for CDMA,” IEEE Trans-

actions on Communications, vol. 46, pp. 258–68, February 1998.

[5] C. Hegarty and B. Vojcic, “Two-stage multiuser detection for non-coherent CDMA,” in Proceedings of the

33rd Annual Allerton Conference on Communications, Control and Computing, (Monticello, IL), pp. 1063–1072,

October 4-6, 1995.

[6] V. Ghazi-Moghadam, L. Nelson, and M. Kaveh, “Parallel interference cancellation for CDMA systems,” in

Proceedings of the 33rd Annual Allerton Conference on Communications, Control and Computing, (Monticello,

IL), pp. 216–24, October 4-6, 1995.

[7] X. Zhang and D. Brady, “Asymptotic multiuser efficiencies for decision-directed multiuser detection,” IEEE

Transactions on Information Theory, vol. 44, pp. 502–15, March 1998.

[8] M. Varanasi, “Decision feedback multiuser detection: A systematic approach,” IEEE Transactions on Informa-

tion Theory, vol. 45, pp. 219–40, January 1999.

[9] P. Patel and J. Holtzman, “Performance comparison of a DS/CDMA system using a successive interference

cancellation (ic) scheme and a parallel ic scheme under fading,” in Proceedings of the ICC/SUPERCOMM ’94 -

1994 International Conference on Communications, vol. 1, (New Orleans, LA), pp. 510–4, May 1-5, 1994.

[10] G. Xue, J. Weng, T. Le-Ngoc, and S. Tahar, “Adaptive multistage parallel interference cancellation for CDMA,”

IEEE Journal on Selected Areas in Communications, vol. 17, pp. 1815–27, October 1999.

[11] G. Xue, J. Weng, T. Le-Ngoc, and S. Tahar, “An analytical model for performance evaluation of parallel

interference cancellers in CDMA systems,” IEEE Communications Letters, vol. 4, pp. 184–6, June 2000.

[12] W. Luo and A. Ephremides, “Energy efficiency of multiuser detection,” in Proceedings of the IEEE Wireless

Communications and Networking Conference, vol. 2, (New Orleans, LA), pp. 852–6, September 21-24, 1999.
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