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Abstract—This paper presents a low-complexity real-time
single-tone phase and frequency estimation technique based on
zero-crossing detection and linear regression. The proposed zero-
crossing phase and frequency estimator fills a gap between low-
complexity phase locked loop estimation and high-performance
maximum likelihood estimation. Similar to a phase locked loop,
the zero-crossing phase and frequency estimator offers low-
complexity sample-by-sample operation appropriate for real-time
applications like distributed transmit beamforming. Numerical
results demonstrate, however, that the proposed technique signif-
icantly exceeds the performance of phase locked loop estimation,

closely tracking the Cramer-Rao lower bound over a wide range
of signal to noise ratios.

I. INTRODUCTION

Distributed transmit beamforming is a technique in which

two or more single-antenna transmitters simultaneously trans-

mit with phase-aligned carriers such that the passband signals

coherently combine at an intended destination. The trans-

mitters in a distributed transmit beamformer form a virtual

antenna array and, in principle, can achieve all of the gains of

a conventional antenna array, e.g. increased range, rate, and/or

energy efficiency, without the size, cost, and complexity of a

conventional antenna array.

Unlike a conventional antenna array, a distributed transmit

beamformer requires precise carrier synchronization among

the transmitters with timing errors significantly smaller than

a carrier period. Several carrier synchronization techniques

have recently been proposed to facilitate distributed transmit

beamforming including full-feedback closed-loop [1], one-

bit closed-loop [2]–[4], master-slave open-loop [5], round-trip

open-loop carrier synchronization [6], [7], and two-way open-

loop carrier synchronization [8]. Each of these techniques has

advantages and disadvantages in particular applications, as

discussed in the survey article [9].

A common feature of several of these techniques is that

the nodes participating in the beamformer must be able to

accurately and quickly estimate the phase and frequency of

one or more sinusoidal beacons received from other nodes in

the network. It is often assumed that the nodes use maximum

likelihood estimators (MLEs) or phase locked loops (PLLs)
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to obtain the necessary phase and frequency estimates. While

the MLE is appealing because of its potential for near-optimal

performance, computation of maximum likelihood estimates

typically requires high computational complexity. The maxi-

mum likelihood estimator is also a batch processing technique

in the sense that the processing begins only after all of the

samples in the observation have been received. The PLL, on

the other hand, is appealing for its low-complexity, sample-

by-sample operation, but tends to provide phase and frequency

estimates with worse performance than the MLE.

This paper presents a new technique for low-complexity

real-time single-tone phase and frequency estimation based

on zero-crossing detection and linear regression. The proposed

technique is similar to the linear regression estimation tech-

niques described in [10] and [11] except that it avoids the com-

putational burden of inverse tangents and phase unwrapping

by only using information contained in the zero-crossings of

the observed signal. The appeal of the proposed zero-crossing

phase and frequency estimator is that it offers low-complexity

sample-by-sample operation similar to a phase locked loop.

Numerical results demonstrate that the proposed technique

also offers near-optimal performance over a wide range of

signal to noise ratios (SNRs).

II. OBSERVATION MODEL

We consider the signal model of [12] with a received signal

given as

z(t) = b exp(j(ωt + θ)) + w(t) (1)

where b, ω, and θ denote the unknown amplitude, frequency,

and phase of the signal, respectively, and w(t) denotes zero-

mean proper complex additive white Gaussian noise. The re-

ceived signal is sampled at a constant sampling rate fs = 1/T
to produce the discrete-time observation

z[n] = z(t0 + nT ) = b exp(j(ω(t0 + nT ) + θ)) + η[n] (2)

for n = 0, . . . , N − 1 where t0 denotes the time of the first

sample and η[n] is a zero-mean proper complex Gaussian

random variable with var{Re(η[k])} = var{Im(η[k])} = σ2

and cov{Re(η[k]), Im(η[k])} = 0. It is assumed that η[n]
are independent and identically distributed (i.i.d.) for n =
0, . . . , N − 1.

The N -sample observation of (2) is provided as an input

to a phase and frequency estimator. Depending on the type of

estimator, the computations can be performed in real-time on a

sample-by-sample basis, i.e. as each sample is received, or as

a batch operation on the entire received signal vector after all



of the samples have been received. The phase and frequency

estimates generated by the estimator are denoted as θ̂ and ω̂,

respectively, and the resulting phase and frequency errors are

denoted as θ̃ := θ − θ̂ and ω̃ := ω − ω̂, respectively.

III. MAXIMUM LIKELIHOOD PHASE AND FREQUENCY

ESTIMATION

Given a joint density of the observation, the maximum

likelihood estimator seeks to find the value of the unknown

parameter(s) that maximizes the likelihood equation, i.e.

λ̂ = arg max
λ∈Λ

log pZ(z ; λ)

where pZ(z ; λ) is the joint density of the observation pa-

rameterized by λ. When the observations are i.i.d. Gaussian

distributed, the maximum likelihood estimator possesses three

desirable asymptotic properties as the number of samples

in the observation becomes large: asymptotic unbiasedness,

asymptotic efficiency, and asymptotically Gaussian estimation

errors. In other words, when the number of samples in the

observation becomes large, the joint statistics of the maximum

likelihood phase and frequency estimation errors are approxi-

mately zero-mean Gaussian distributed with covariance given

in (13).

Upon receiving the discrete time observations according to

(2) for n = 0, . . . , N − 1, the maximum likelihood frequency

estimate can be computed as [12]

ω̂ = arg max
ω

|A(ω)| (3)

where

A(ω) =
1

N

N−1
∑

n=0

z[n] exp(−jnωT ). (4)

Once the maximum likelihood frequency estimate has been

computed, the maximum likelihood phase estimate follows as

θ̂ = angle {exp(−jω̂t0)A(ω̂)} . (5)

Computation of (5) requires a four-quadrant arctan operation

which can be achieved with reasonable complexity through the

use of a lookup table. Computation of (3), however, requires

maximization over a multimodal objective function. Simple

single-parameter maximization techniques, e.g. gradient as-

cent, can converge to local maxima if not initialized close

to the solution. This can lead to poor estimation accuracy.

Given the multimodal nature of |A(ω)| and recognizing that

the M -point DFT is a sampled version of A(ω) at frequencies

ω = 2πk
MT

for k = 0, . . . , M − 1, a common approach to

maximum likelihood frequency estimation is to use the fast

Fourier transform (FFT) to efficiently compute A
(

2πk
MT

)

for

k = 0, . . . , M − 1 and to then select the index k at which

A
(

2πk
MT

)

attains its maximum magnitude, i.e.,

ω̂ = arg max
ω∈Ω

|A(ω)| (6)

where Ω := {0, 2π
MT

, . . . , 2π(M−1)
MT

}. Using an M -point FFT

to compute the maximum likelihood frequency estimate, how-

ever, establishes a tradeoff between estimation accuracy and

computational complexity. The achievable estimation accuracy

of the FFT-based maximum likelihood frequency estimator in

(6) depends on the frequency resolution of the M -point FFT,

i.e.
fs

M
, whereas the asymptotic complexity of an M -point

FFT is M log2(M). In low-SNR scenarios, i.e. when b
2σ2

is small, fine frequency resolution is not necessary because

the performance of the MLE is dominated by noise. In high-

SNR scenarios, however, the performance of the MLE may be

limited by the frequency resolution of the M -point FFT.

Rather than selecting the frequency estimate from a discrete

set as in (6), the FFT magnitude can be interpolated to im-

prove the estimation accuracy. A full sinc interpolation of the

FFT is computationally infeasible, but simpler interpolation

techniques can often be used with acceptable results. For

example, suppose the maximum in (6) occurs at FFT index

k̂. A quadratic fit y = ax2 + bx + c in the neighborhood of

the maximum can be computed given the frequencies x ∈
{

2π(k̂−1)
MT

, 2πk̂
MT

, 2π(k̂+1)
MT

}

and FFT magnitudes y = |A(x)|.

The maximum likelihood frequency estimate can then be

computed using standard calculus techniques as ω̂ = −b
2a

.

An additional difficulty with applying the FFT-based MLE

to carrier synchronization in distributed transmit beamforming

systems is that the FFT is a batch operation that requires the

entire observation to be present in order to begin processing.

Hence, a high-resolution FFT may incur significant processing

delay after the conclusion of the observation, leading to

potential drift in open-loop synchronization systems. This is in

contrast to real-time sample-by-sample estimation techniques

such as the phase locked loop and zero-crossing phase and

frequency estimator, described in the following sections.

IV. PLL PHASE AND FREQUENCY ESTIMATION

Phase locked loops (PLLs) are a well-known technique for

synchronizing a local oscillator to an external reference signal

[13]. Although PLLs are not usually considered in the context

of phase and frequency estimation, they can be used as a

computationally efficient method for extracting the phase and

frequency from an observation of a single-tone signal in noise.

A block diagram of a quadrature PLL is shown in Figure 1.

The PLL is composed of three elements: a phase detector, a

loop filter, and a voltage controlled oscillator (VCO). In the

absence of noise, the quadrature phase detector output is

v[n] = KdIm {b exp(j(ωnT + θ)) exp(−jφo[n])}

= Kdb sin (∆[n])

where ∆[n] is the phase difference between the input and

feedback signals and Kd is the phase detector gain parameter.

quadrature phase detector

loop filter VCO KoIm(·) Kd×z[n]

y[n] = exp(−jφo[n])

Fig. 1. Quadrature phase locked loop block diagram.



The loop filter serves to suppress noise at the output of

the phase detector. The loop filter is typically parameterized

by its 3dB bandwidth ω3dB. Given ω3dB, Ko, and Kd, the

loop filter can be designed according to the procedures in [13]

such that the PLL has the desired transient and steady-state

characteristics.

The output of the loop filter u[n] is connected to the input of

VCO which generates a complex exponential output y[n] for

feedback to the phase detector at frequency ωo[n] = ωnom +
Kou[n] where ωnom is the nominal frequency of the VCO

in the absence of a control input and Ko is the VCO gain

parameter. The VCO phase is then updated according to

φo[n + 1] = φo[n] + Tωo[n]

and the feedback y[n + 1] = exp(−jφo[n + 1]) is then

computed and fed back to the phase detector to be multiplied

with the next input sample.

Given an N -sample observation, a frequency estimate can

be obtained from the PLL by simply sampling the frequency

of the VCO after the PLL has locked at the end of the

observation, i.e.

ω̂ = ωo[N − 1] = ωnom + Kou[N − 1]. (7)

The phase estimate can be computed as

θ̂ = φo[N − 1] − (N − 1)T ω̂. (8)

In other words, the PLL phase estimate is computed by sub-

tracting the estimated accumulated phase over the observation

(based on the PLL frequency estimate) from the final phase

of the VCO.

When the PLL is locked and ∆[n] is small such that

sin (∆[n]) ≈ ∆[n], the PLL can be analyzed as a linear

system [13]. The discrete-time transfer function relating the

PLL output phase and input phase can then be written as

Hφ(z) =
Φo(z)

Φin(z)
=

bKdKoF (z)L(z)

1 + bKdKoF (z)L(z)
(9)

where L(z) := Tz−1

1−z−1 and F (z) is the discrete-time transfer

function of the loop filter. Similarly, the discrete-time transfer

function relating the PLL output frequency and input phase

can be written as

Hω(z) =
Ωo(z)

Φin(z)
=

bKdKoF (z)

1 + bKdKoF (z)L(z)
. (10)

These transfer functions can be used to provide analytical

predictions of the PLL phase and frequency estimation per-

formance given a white Gaussian phase input.

The PLL operates on standard feedback control principles

where the desired dynamics can be achieved through proper

selection of the parameters ω3dB, Ko, and Kd. By following

the PLL design procedures in [13], however, it can be shown

that the closed loop transfer function of the PLL depends

only on ω3dB. Intuitively, ω3dB is selected to achieve the

desired tradeoff in convergence speed and the amount of

noise passed through to the VCO. As shown by example in

Figure 2, selecting ω3dB too low results in poor estimation

performance because the PLL does not have enough time to

converge. Setting ω3dB too high also results in poor estimation

performance because, while the PLL converges quickly, the

noise passed by the loop filter to the input of the VCO

degrades the frequency and phase estimates. In Section VI,

we numerically evaluate the mean squared estimation error

of a third-order PLL with an active PI (proportional-integral)

loop filter [13] as a function of ω3dB and SNR.
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Fig. 2. An example of PLL convergence as a function of the loop filter
bandwidth ω3dB. When ω3dB = 0.01ωnom or ω3dB = 0.02ωnom, the PLL
suppresses the noise but converges too slowly. When ω3dB = 0.08ωnom , the
PLL converges quickly but lets through excessive noise.

V. ZERO-CROSSING PHASE AND FREQUENCY ESTIMATION

The zero-crossing phase and frequency estimator is based

on the observation that the phase of the signal in (1) is a

first-order polynomial in t, i.e. z(t) = b exp(jφ(t)) + w(t)
with φ(t) = ωt + θ. The slope and intercept of this line

correspond to the radian frequency and phase of the observed

signal. If L ≥ 2 points on this line can be measured,

i.e. {(t1, φ1), . . . , (tL, φL)}, then the slope and intercept of

the line can be determined exactly. In the presence of noise,

a linear regression can be performed to find the least-squares

fit for the slope and intercept of the line.

The zero-crossing phase and frequency estimator generates

the time/phase coordinate set {(t1, φ1), . . . , (tL, φL)} by de-

tecting zero crossings in the real and imaginary components

of (2) according to the state machine shown in Figure 3. The

hysteresis parameter α ≥ 0 sets the threshold at which zero

crossings are detected.

To illustrate the principle of operation, consider the example

shown in Figure 4 with hysteresis parameter α = 0.5. Both the

real and imaginary parts of the discrete-time observation in (2)

are plotted. Looking first at the real part of the signal, we see

that the signal begins in state 2 and transitions to state 4 when

n = 2. The signal remains in either state 2 or state 4 until

n = 13, at which point the 4 → 1 state transition triggers the

detection of positive-slope zero crossing. The time of this first



start

state 1 state 2
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x[n] > α

x[n] > α

x[n] > α

x[n] > α

x[n] < −α

x[n] < −α

x[n] < −α

x[n] < −α

|x[n]| ≤ α|x[n]| ≤ α

Fig. 3. State machine implementation of the zero crossing detector. The
variable x[n] denotes either the real or imaginary part of z[n]. A negative-
slope zero crossing is detected on state transitions 1 → 2 and 3 → 2. A
positive-slope zero crossing is detected on state transitions 2→ 1 and 4→ 1.

zero crossing is estimated using a simple linear interpolator

between the last sample in state 2, i.e. n = 11, and the first

sample in state 1, i.e. n = 13. To determine the phase of the

signal at the time of this zero crossing, we note that positive-

slope zero crossings of the real part of the signal must occur

at phase k2π − π/2 for integer k. Similarly, negative-slope

zero crossings of the real part of the signal must occur at

phase k2π + π/2 for integer k. Hence, the phase of this first

positive-slope zero crossing is set to −π/2.

The next zero crossing of the real part of the signal is

detected in the 1 → 2 state transition between samples n = 15
and n = 16. The time of this negative-slope zero crossing

is again estimated using a simple linear interpolator and the

phase of this zero crossing is set to π/2. Two more zero cross-

ings in the real part of the signal are evident in this example,

resulting in the coordinate set for the real part of the signal of

SR = {(tR1,−π/2), (tR2, π/2), (tR3, 3π/2), (tR4, 5π/2)}.

0 5 10 15 20 25 30
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

sample index n

re
a
l 
a
n
d
 i
m
a
g
in
a
ry
 p
a
rt
s
 o
f 
th
e
 o
b
s
e
rv
a
ti
o
n

 

 

real part

imaginary part

Fig. 4. Real and imaginary parts of a noisy discrete-time observation used
to illustrate the zero-crossing phase and frequency estimator with hysteresis
parameter α = 0.5.

The same process is applied to the imaginary part of

the signal. We note that positive-slope zero crossings of

the imaginary part of the signal must occur at phase k2π
for integer k. Similarly, negative-slope zero crossings of the

imaginary part of the signal must occur at phase k2π + π
for integer k. In the example shown in Figure 4, a total

of five zero crossings are detected in the imaginary part of

the signal. Since the first detected zero crossing has positive

slope, the coordinate set for the imaginary part of the signal is

SI(ℓ) = {(tI1, ℓ2π), (tI2, ℓ2π+π), (tI3, ℓ2π+2π), (tI4, ℓ2π+
3π), (tI5, ℓ2π +4π)}. Note that this coordinate set is pareme-

terized by the integer parameter ℓ to facilitate alignment with

the coordinate set obtained from the real part of the signal, as

described below.

To compute the phase and frequency estimates, we form the

union of the coordinate sets

S(ℓ) = SR ∪ SI(ℓ) (11)

and perform a linear regression [14] on S(ℓ) to determine the

least-squares slope and intercept of the phase line. The slope

and intercept are set to ω̂(ℓ) and θ̂(ℓ), respectively. The total

squared error of the linear regression is then

E(ℓ) =

N−1
∑

n=0

∣

∣

∣
b exp

{

j
(

ω̂(ℓ)nT + θ̂(ℓ)
)}

− z[n]
∣

∣

∣

2

. (12)

Note that (11) and (12) should be computed at least over ℓ ∈
{−1, 0, 1} to find the value of ℓ such that E(ℓ) is minimized.

In other words, the integer parameter ℓ should be selected to

best align the independently obtained phases in the real and

imaginary coordinate sets. It is often the case that the total

squared error is minimized when ℓ = 0, i.e. the coordinate sets

are often naturally aligned. In the example shown in Figure 4,

however, E(ℓ) is minimized when ℓ = −1.

A. Real-Time Sample-by-Sample Implementation

Unlike the FFT-based MLE which requires all N samples

of the observation to be present before processing can be-

gin, the zero-crossing phase and frequency estimator can be

implemented on a sample-by-sample basis. Prior to the first

sample of the observation, we initialize the tracking variables

A = B = C = D = E = 0. Samples are taken until a

zero crossing is detected in the real or imaginary part of the

observation. Upon the detection of a zero crossing, a new

coordinate (ti, φi) is added to the coordinate set S and the

tracking variables are updated as follows:

A = A + t2i ,

B = B + 1,

C = C + ti,

D = D − tiφi, and

E = E − φi.

Note that the D and E tracking variables may need to be

indexed and updated according to the alignment parameter

ℓ in order to select the real/imaginary phase alignment that



minimizes the total squared error as discussed above. In any

case, updating the tracking variables requires only a modest

fixed amount of processing per detected zero crossing. As

shown in [14], the least-squares phase and frequency estimates

can be calculated from the tracking variables as

θ̂ = −
EA − CD

BA − C2

ω̂ = −
C

A
θ̂ −

D

A
.

Hence, the least-squares phase and frequency estimates of the

zero-crossing estimator can be computed at any time with two

reciprocal operations and eight multiplications.

In practice, it is often the case that the unknown frequency

ω will be known within a certain range. In these types of

scenarios, the zero-crossing phase and frequency estimator can

pre-filter the observation to reduce the overall noise variance

while passing the desired frequencies. While adding some

additional computational complexity, the filtering can also be

performed also on a sample-by-sample basis and the order

of the filter can be selected to maintain real-time operation.

Moreover, the phase offset caused by pre-filtering is known

and can be corrected at the output of the zero-crossing phase

and frequency estimator.

VI. NUMERICAL RESULTS

This section presents numerical results comparing the FFT-

based MLE, PLL, and zero-crossing phase and frequency

estimators for different values of M and ω3dB. All of the

results in this section assume an observation with N = 1000
samples at fs = 16 kHz. 10000 realizations of the complex

exponential signal and AWGN were generated with fixed

b = 1 and random independent uniformly distributed phase

and frequency centered at 1020 Hz according to

φ ∼ U(−π, π) and

ω ∼ U (2π · 1010, 2π · 1030) .

The independent AWGN in each realization was generated

with independent real and imaginary components, each zero

mean, white, and with variance σ2.

The FFT-based MLE, PLL, and zero-crossing phase and

frequency estimation techniques are compared in terms of

their mean squared estimation error. In order to understand

the relative performance of each estimator with respect to

the theoretically achievable performance, we also compute the

Cramer-Rao bound (CRB) [15]. The CRB for the covariance

of the frequency and phase estimates of a complex exponential

in AWGN when both the phase and frequency are unknown

is given as [12]

cov

{

[

ω̃, θ̃
]⊤

}

≥
σ2

b2

[

1
T 2N(R−S2)

−(n0+R)
TN(R−S2)

−(n0+R)
TN(R−S2)

n2

0
+2n0R+S

N(R−S2)

]

(13)

where n0 := t0fs is the index of the first sample, R := (N −
1)/2, S := (N − 1)(2N − 1)/6, and the notation A ≥ B

means that A − B is positive semidefinite.
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Fig. 5. Mean squared frequency estimation error as a function of SNR.
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Fig. 6. Mean squared phase estimation error as a function of SNR.

Figures 5 and 6 show the mean squared frequency and

phase estimation error, respectively, of the FFT-based MLE,

PLL, and zero-crossing phase and frequency estimators as a

function of SNR := 10 log10(b
2/(2σ2)) for three values of

M and three values of ω3dB. The FFT-based MLE in these

examples is implemented with quadratic interpolation as dis-

cussed in Section III. The PLL phase and frequency estimator

in these examples uses a phase detector with Kd = 1, a

VCO with Ko = 10 and ωnom = ω (no frequency offset),

and a second-order active PI loop filter [13] designed with

several different values of ω3dB and converted to discrete-

time using the bilinear transform. The zero-crossing phase

and frequency estimator in these examples uses a hysteresis

parameter α = 0.1 and a 64th order FIR bandpass input pre-

filter with first stopband below 800 Hz, second stopband above

1250 Hz, and passband between 920 Hz and 1120 Hz designed

using MATLAB’s firls filter design function.



In these examples, the PLLs tend to provide the worst esti-

mation performance of all of the techniques considered except

with respect to the FFT-based MLE at very low SNR. To

understand why this is the case, recall that the PLL frequency

estimate is obtained as ω̂ = ω0[N − 1] = ωnom +K0u[N − 1]
where u[N−1] is the final output of the loop filter in Figure 1.

In the locked state with a white Gaussian phase input, (10) can

be used to predict the variance of the frequency estimate as

var(ω̂) = var(φin) ·
1

2π

∫ π

−π

|Hω(ejβ)|2 dβ.

The variance of the PLL phase estimate in the locked state

can be predicted similarly. The dotted lines in Figures 5 and 6

show the PLL estimation performance prediction based on the

linear locked PLL model in (9) and (10). The PLL phase and

frequency estimation performance closely tracks the analytical

predictions except at very low SNR (where the small angle

approximation in the linear PLL model does not hold) and at

very high SNR for the PLL with loop filter bandwidth ω3dB =
0.04ωnom. The flattening of the MSE curve for the PLL with

ω3dB = 0.04ωnom at SNR ≥ 40 dB is the result of slow PLL

convergence. In this case, the the transient effects of the PLL

dominate the effects of the noise on the phase and frequency

estimates. Overall, as long as the PLL loop filter bandwidth

is sufficiently wide to allow PLL convergence, narrower loop

filter bandwidths tend to give better performance since the

variances of the phase and frequency estimates are increasing

functions of the loop filter bandwidth.

The FFT-based MLE phase and frequency estimators with

quadratic interpolation tend to perform well when SNR ≥
−15 dB. At very low SNR, the FFT-based MLE tends to

perform poorly because the desired signal does not emerge

from the noise in the FFT. When M = 216 and −15 ≤ SNR ≤
60 dB, the FFT-based MLE phase and frequency estimator

closely tracks the CRLB. The effects of limited frequency

resolution in the FFT-based MLE phase and frequency estima-

tors can be seen in the flattening of the phase and frequency

mean squared estimation error curves for M = 212 and

M = 214 at higher SNR. Performance in this regime could

be improved with more sophisticated interpolation techniques,

at the expense of additional computational complexity.

The zero-crossing phase and frequency estimator tends to

perform well when SNR ≥ −3 dB, closely tracking the

CRLB for SNR up to 45 dB. High SNR performance can

be further improved by decreasing the hysteresis parameter α,

increasing the sampling rate, and/or using more sophisticated

interpolation techniques to estimate the zero crossing times.

The zero-crossing estimator performs better than all of the

FFT-based MLE estimators at very low SNR and offers

equivalent or better performance than all of the FFT-based

MLE estimators for 0 ≤ SNR ≤ 40 dB. The advantage of the

zero-crossing estimator, however, is that it is able to perform

the necessary computations on a sample-by-sample basis and

requires only a small amount of additional computation at the

end of the observation to produce the necessary phase and

frequency estimates.

VII. CONCLUSION

This paper presented a performance comparison among

three different phase and frequency estimation techniques in

the context of carrier synchronization for distributed transmit

beamforming. We proposed a low-complexity real-time single-

tone phase and frequency estimation technique based on zero-

crossing detection and linear regression. The proposed tech-

nique is similar to the linear regression estimation techniques

described in [10] and [11] except that it avoids the com-

putational burden of inverse tangents and phase unwrapping

by only using information contained in the zero-crossings of

the observed signal. The proposed zero-crossing phase and

frequency estimator offers near-optimal performance over a

wide range of signal-to-noise ratios as well as low-complexity

sample-by-sample operation appropriate for real-time appli-

cations. Numerical results were provided demonstrating that

the proposed technique closely tracks the Cramer-Rao lower

bound over a wide range of signal to noise ratios.

REFERENCES

[1] Y. Tu and G. Pottie, “Coherent cooperative transmission from multiple
adjacent antennas to a distant stationary antenna through AWGN chan-
nels,” in IEEE Vehicular Technology Conf. (VTC), vol. 1, Birmingham,
AL, Spring 2002, pp. 130–134.

[2] R. Mudumbai, J. Hespanha, U. Madhow, and G. Barriac, “Scalable
feedback control for distributed beamforming in sensor networks,” in
IEEE International Symp. on Information Theory (ISIT), Adelaide,
Australia, September 2005, pp. 137–141.

[3] R. Mudumbai, B. Wild, U. Madhow, and K. Ramchandran, “Distributed
beamforming using 1 bit feedback: from concept to realization,” in 44th

Allerton Conf. on Comm., Control, and Computing, Monticello, IL, Sep.
2006, pp. 1020 – 1027.

[4] R. Mudumbai, J. Hespanha, U. Madhow, and G. Barriac, “Distributed
transmit beamforming using feedback control,” IEEE Trans. on Infor-
mation Theory, in review.

[5] R. Mudumbai, G. Barriac, and U. Madhow, “On the feasibility of
distributed beamforming in wireless networks,” IEEE Trans. on Wireless

Communications, vol. 6, no. 5, pp. 1754–1763, May 2007.
[6] D.R. Brown III, G. Prince, and J. McNeill, “A method for carrier fre-

quency and phase synch. of two autonomous cooperative transmitters,”
in IEEE Signal Proc. Advances in Wireless Comm. (SPAWC), New York,
NY, June 5-8, 2005, pp. 278–282.

[7] D.R. Brown III and H.V. Poor, “Time-slotted round-trip carrier synchro-
nization for distributed beamforming,” IEEE Trans. on Signal Process-

ing, vol. 56, no. 11, pp. 5630–5643, November 2008.
[8] R. D. Preuss and D.R. Brown III, “Retrodirective distributed transmit

beamforming with two-way source synchronization,” in 44th Annual

Conference on Information Sciences and Systems (CISS 2010), March
2010, p. tbd.

[9] R. Mudumbai, D.R. Brown III, U. Madhow, and H.V. Poor, “Distributed
transmit beamforming: Challenges and recent progress,” IEEE Commu-

nications Magazine, vol. 47, no. 2, pp. 102–110, February 2009.
[10] S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear

regression,” IEEE Transactions on Information Theory, vol. 31, no. 6,
pp. 832–835, November 1985.

[11] S. Kay, “A fast and accurate single frequency estimator,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 37, no. 12,
pp. 1987–1990, December 1989.

[12] D. Rife and R. Boorstyn, “Single-tone parameter estimation from
discrete-time observations,” IEEE Trans. on Information Theory, vol. 20,
no. 5, pp. 591–598, September 1974.

[13] R. Best, Phase-Locked Loops : Design, Simulation, and Applications.
New York: McGraw-Hill, 2003.

[14] G. Allaire and S. M. Kaber, Numerical Linear Algebra. Springer
Science + Business Media, LLC, 2008.

[15] H.V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
New York: Springer-Verlag, 1994.


