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ABSTRACT

Within the established framework of linear detection for
multiuser DS-CDMA systems, we derive length conditions
for perfect recovery of the transmitted symbols of all K in-
cell mobile users. The analysis accounts for multiple access
interference with arbitrary asynchronism as well as multi-
path interference with arbitrary delay spread. The results
imply that linear detectors achieving perfect symbol recov-
ery may require an observation interval much longer than a
single bit. Moreover, we show that linear detectors employ-
ing oversampling and/or antenna arrays require less taps
to achieve perfect symbol recovery than conventional non-
oversampled, single antenna receivers. Simulation results
are presented verifying the derived length conditions.

1. INTRODUCTION

Considerable research effort has focused on the problem of
multiuser detection for DS-CDMA communication systems
recently. Linear detectors, although suboptimal, have been
extensively studied due to their good performance prop-
erties and reasonable complexity. In noise-free conditions
it has been shown that the linear decorrelating detector
can perfectly recover the symbols of all users in the sys-
tem by completely canceling multiple access interference.
Analogously, in single user equalization, it has been shown
that zero-forcing fractionally-spaced equalizers (FSEs) can
also perfectly recover symbols in the noise-free case by com-
pletely cancelling the effects of multipath interference. In
this paper we analyze the perfect symbol recovery problem
for multiuser DS-CDMA systems with arbitrary multipath
interference. To perfectly recover transmitted symbols in
this system, the linear detector must completely cancel both
multiple access and multipath interference.

Conditions for perfect symbol recovery in the single user
FSE problem are well known (see [4] for example). The
necessary and sufficient conditions may be summarized as

o sufficient equalizer (linear detector) length,
e subchannel disparity (for FSEs), and
e no additive channel noise.

It is well known that satisfying the first two requirements
leads to a system matrix with full column rank. As a conse-
quence of this full column rank, a FSE can perfectly recover
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every symbol (i.e., every delay) in its observation interval.
In this paper, we discuss the applicability of the full col-
umn rank condition to the DS-CDMA multiuser detection
problem and define a weaker criterion for perfect symbol
recovery of all users at only some delays. We derive a nec-
essary and sufficient vector space condition for weak perfect
symbol recovery (WPSR) and, in the spirit of single user
equalization, we extend this idea to calculable linear detec-
tor length requirements for synchronous and asynchronous
DS-CDMA systems. Just as length requirements in and of
themselves are not sufficient for perfect symbol recovery in
single user equalization, our proposed linear detector length
requirements are also not sufficient for perfect symbol recov-
ery and turn out to be slightly stronger than necessary due
to a simplifying assumption on the structure of the inter-
ference subspace. Simulations are presented that verify the
analysis and show that satisfaction of the proposed length
conditions is actually often sufficient for WPSR.

2. DISCRETE TIME SYSTEM MODEL

Counsider the baseband DS-CDMA system model shown in
Figure 1. In this general MIMO system model, K possi-
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Figure 1: DS-CDMA system model.

bly asynchronous users transmit coherently modulated DS-
CDMA signals with common spreading gain N through dis-
persive channels (assumed time invariant over the linear de-
tector’s observation interval) to a bank of M antennas at
the receiver. The observed signal at each antenna is cor-
rupted by AWGN independent of the users’ symbols. We
assume that the pulse shaping and channel filters are FIR



and that the spreading codes are periodic with period equal
to the spreading gain N = T'/T..

The receiver shown in Figure 2 consists of a bank of
M antennas each followed by a FIR receiver input filter, a
T/ P rate sampler, and a digital linear filter with Ny < oo
taps. For notational convenience, we group the bank of
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Figure 2: Multi-antenna, oversampling receiver with a lin-
ear multiuser detector.
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digital linear filters into a long vector as f = [f' ... fAT,I]T
and call f the linear detector. The output of the digital
filters is summed to form the soft decision for a desired
user at symbol index n denoted by y(n).

The prior assumptions imply that the combined impulse
response of the pulse shaping filter, the &, mth propagation
channel, and the receiver input filter is FIR. For notational
convenience, we will hereafter refer to these combined im-
pulse responses simply as the “channels”. We denote the
common time support of all channels as [0, LT./P).

In the single antenna case, it has been shown [1, 5] that
the regressor input to the linear detector may be expressed
as a linear combination of the source symbols with additive
noise such that r(n) = Hs(n) + w(n). The system matrix

H = [ HY H® H) ]
is constructed of sub-system matrices for each user of di-
mension Ny x Q) exhibiting the structure

T
a® 1
H® + a®
J
a®
1

where a'® accounts for the FIR T, /P sampled k" user’s
spreading code convolved with the k%" user’s channel. The
vector of user-ordered source symbols at symbol index n is
given by

s(n) =[s ) ... sP(m—-Q" +1)
s(K)(n) S(K)(’I'L —QY 4 1)]1' (1)

where Q™ denotes the number of symbols from the k"
user in the observation interval.

It is straightforward to generalize this single-antenna
model to account for multiple antennas at the expense of
slightly more complicated notation. In this case the to-
tal number of taps in the linear detector is now M Ny and
the regressor input to the linear detector may be written
as r(n) = Hs(n) + w(n) where the multi-antenna system
matrix # is given by

HY HP ... HP
HYY HY ... H

H=| | S . (2)
HS&) HS&) . Hg’;)

and w(n) is an M Ny x 1 vector of additive channel noise.
The H® elements of H represent the k** user to m*" an-
tenna system matrices and the dimensions of ‘H are M Ny x
S5, Q™. The soft decisions at the output of the linear

detector are then y(n) = f' r(n) = f' [Hs(n) + w(n)].

3. PERFECT SYMBOL RECOVERY

The following analysis of the discrete time system model
examines the effects of linear detector length (M Ny) on
the existence of linear detectors that achieve perfect sym-
bol recovery in the absence of additive channel noise. The
classical definition of perfect symbol recovery is given be-
low.

Definition 1. For each k € {1,2,...,K}, strong perfect
symbol recovery (SPSR) requires that the linear detector can
achieve y(n) = s (n—6) for all § =0,1,2,..., Q" — 1.

It is well known that requiring SPSR is equivalent to
requiring # to have full column rank. Although several
papers have analyzed linear detection under the assumption
of a full column rank system matrix (see for example [2, 3]),
simulations have shown there exist system matrices with
unfortunate combinations of asynchronism and multipath
channels which do not have full column rank for any value
of Ny. In this case, even though a linear detector can’t
perfectly recover all the symbol delays of all K users, it
may still be possible to perfectly recover one or more symbol
delays for all K users. This motivates the definition of weak
perfect symbol recovery (note that SPSR = WPSR, but not
conversely).

Definition 2. For each k € {1,2,..., K}, weak perfect sym-
bol recovery (WPSR) requires that the linear detector can
achieve y(n) = s*) (n—3) for at least oned € {0,1,2,..., Q™ —
1}.

Given the previous development of the discrete time
model, we seek to derive an expression for M Ny such that
WPSR is achievable. Let Hs be a matrix of dimension
MN; x K formed by taking one column from each user’s
portion of the system matrix. These columns correspond to
a desired symbol delay for each user. Let #; be a matrix
of dimension MN; x 35 Q™ — K composed of the re-
maining columns of H. Define subspaces Vs = range(Hs)
and Vi = range(H1).



Proposition 1. A linear detector can achieve WPSR <
IHs such that dim(Vs) = K and dim(Vs NVi) = 0.

The proof of this proposition is straightforward and
omitted for space. Proposition 1 implies that a necessary
condition for WPSR is that M Ny > dim(V;) + K.

Since it is difficult to develop a simple characteriza-
tion of the exact dimension of the subspace Vi, we make
a worst-case simplifying assumption in the following anal-
ysis. Specifically, in order to develop calculable linear de-
tector length conditions we assume that H; has full column
rank and consequently that dim(V7) is equal to the number
of columns in H;. Although it is easy to develop exam-
ples where H; does not have full column rank implying
that there are cases where this assumption leads to length
conditions that are somewhat stronger than necessary, we
justify this assumption by simulation in Section 4. Under
our simplifying assumption, the length condition may be
written as

K
MN; > Q™. (3)

k=1

We remind the reader that this length condition is not suf-
ficient since it says nothing about the intersection of the
subspaces V; and Vs. The simulations in Section 4 show
that satisfying (3) tends to also satisfy the WPSR condi-
tions in Proposition 1, but we also provide an example in
Section 4 where the system matrix does not satisfy the re-
quirements for WPSR, when (3) is satisfied.

3.1. Synchronous Case

In the synchronous case, inspection of H allows us to express
) _ [Np+L-1
the exact number of columns per user as Q") = [T

for k =1,2,..., K. Thus, in order to satisfy (3), the linear
detector must satisfy the length condition

Nf+L-1

MN¢ > K| —/—F5|. 4

p2 [Nl (4

To solve for Ny in (4) we will use the substitution
Nf+L—1=aNP—b (5)

for a € N and b € {0,1,...,NP — 1}. This allows us to
rewrite (4) as

M(@NP—-b—L+1) > K[M-‘ =K

NP

since Ny = aNP —b — L + 1. Solving for the minimum
integer a satisfying this expression, we find that

= 5w ©

for K < MNP. The value of b € {0,1,..., NP — 1} that
minimizes Ny is

b:" L-1

Substituting these results for a and b into (5) and solving
for Ny yields the desired linear detector length condition
under synchronous transmission as

MN; > K [7NPL__;/MW (7)

for K < MNP and L > 1.

3.2. Asynchronous Case

In the asynchronous case, the baud timing is different for
each user and consequently the number of symbols in the
observation interval may differ between users. Inspection
of # shows that each user may contribute one additional
symbol to the observation interval depending on their de-
lay as well as the spreading gain, oversampling factor, and
channel length. In order to develop a length condition valid
for any possible combination of user delays, our approach is
to select M Ny such that M Ny > max Y, Q* where the
maximum is taken over all possible delays. Since each user
contributes at most one additional column over the syn-
chronous case, we can use (4) to write the desired condition

as
Ny+L—-1
MN;>K (| =L 22"21 +1).

Following the same analysis steps as the synchronous case,
for K < MNP and L > 1, we can write a closed form ex-
pression for the desired length condition under asynchronous
transmission as

MN; 21{([%} +1>. )

4. SIMULATION RESULTS

The simulations shown in Figures 3 and 4 plot the theo-
retical minimum linear detector length versus the number
of synchronous/asynchronous users for a DS-CDMA sys-
tem with 8 chip Hadamard spreading codes and channels
with support [0,67,) Also plotted are the results of 200
Monte Carlo simulations for systems with random (time in-
variant over the observation interval) propagation channels
and asynchronism. In these simulations, we incrementally
increased the linear detector length until the necessary and
sufficient WPSR conditions in Proposition 1 were satisfied.
One synchronous simulation was run with the simulation
results exactly matching the synchronous length condition
in (7).

Note that the derived length conditions and the simula-
tion results above imply that the linear detector observation
interval may need to be much longer than a single bit in
order to achieve WPSR. Furthermore, these results imply
that oversampling and/or antenna arrays reduce the total
number of taps required by the linear detector for WPSR
when compared to the chip-rate, single antenna case.

Although these simulations suggest that satisfying the
proposed length condition always implies WPSR, it is easy
to construct a simple example demonstrating the insuffi-
ciency of (3). Consider the classical scenario with iden-
tity, non-dispersive channels (L = 1). Under this assump-
tion, the columns of the system matrix H are simply the
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Figure 3: Linear detector length versus number of users for
delay spread L = 6, one antenna (M = 1), spreading gain
N = 8, and chip rate sampling (P = 1). Upper starred line
is from (8) and lower starred line is from (7).
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Figure 4: Linear detector length versus number of users for
delay spread L = 12, two antennas (M = 2), spreading gain
N = 8, and fractional chip rate sampling (P = 2). Upper
starred line is from (8) and lower starred line is from (7).

spreading codes of the users. Now suppose there are two
synchronous users with spreading gain N = 4, and the re-
ceiver has a single antenna, sampled at the chip rate. We
can use (4) to write Ny > 2[Ny/4] which is satisfied for
Ny = 2. Suppose that the first user’s spreading code is
given by [1,1,1,1]" and the second user’s spreading code
is [1,1,—1,—1]". Observe that these codes are orthogonal
and that the conditions for WPSR would be satisfied for
N > 3 but with Ny = 2 the system matrix

1 1
#=l1 ]
clearly does not satisfy the requirements for WPSR. This
behavior is loosely analogous to a loss of subchannel dis-
parity in single user equalization but simulations suggest

that this sort of problem only tends to occur with systems
having a small number of users.

5. CONCLUSIONS

In this paper we analyzed the relationship between linear
detector length and the ability to perfectly recover trans-
mitted symbols. Using a general system model account-
ing for nontrivial propogation channels and arbitrary asyn-
chronism, we proposed an appropriate weaker definition for
perfect symbol recovery in multiple access communication
systems and derived closed form linear detector length con-
ditions in both synchronous and asynchronous cases. Sim-
ulation results suggested that even though the length con-
ditions are not sufficient, their satisfaction often creates a
system matrix which meets all the requirements for WPSR.
Topics for future research include the development of neces-
sary and sufficient conditions for WPSR in multiple access
communication systems under a framework similar to single
user equalization.
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