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Multistage Parallel Interference Cancellation:
Convergence Behavior and Improved Performance

Through Limit Cycle Mitigation
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Abstract—This paper investigates the convergence behavior of
the hard-decision multistage parallel interference cancellation
(PIC) detector in synchronous code division multiple access
(CDMA) communication systems with random spreading se-
quences. Hard-decision multistage PIC is known to possess three
desirable properties for multiuser detectors: a) low computational
complexity, b) low decision latency due to parallel computation,
and c) good bit error rate (BER) performance due the fact that
the optimum (joint maximum likelihood) symbol estimates are
a fixed point of the iteration. With respect to the third property,
hard-decision multistage PIC detection is also known to sometimes
demonstrate two modes of undesirable convergence behavior:
convergence to suboptimum fixed points and limit cycles. The
results in this paper show that limit cycles are often the dominant
source of performance degradation. To improve the performance
of the hard-decision multistage PIC detector, we propose a class
of limit cycle mitigation algorithms that reactively correct for
limit cycles and provide a tradeoff between performance gain
and increased computational complexity. Computer simulations
suggest that significant performance gains may be possible in some
cases with only modest increases in computational complexity.

Index Terms—Code division multiple access, interference sup-
pression, maximum likelihood detection, neural networks.

I. INTRODUCTION

THE advent of third-generation (3-G) cellular systems
based primarily on code division multiple access (CDMA)

technology and the improvements in signal processing hardware
over the last decade have led to a renewed interest in multiuser
detection [1] as a viable method to improve the throughput
and quality of cellular communication systems. The parallel
interference cancellation (PIC) multiuser detector is generally
perceived by researchers as one of the most promising ap-
proaches [2], [3] and has been the subject of extensive research
recently due to its applicability to 3-G cellular standards [4].
PIC multiuser detection was first introduced for CDMA com-
munication systems in [5] and [6] as the “multistage detector”
and was shown to have low computational complexity, good
performance, and close connections to the optimum joint max-
imum likelihood detector. More recently, several companies
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have begun to develop iterative PIC-based processors/systems
for potential deployment in 3-G cellular base stations [7].

A key feature of Varanasi and Aazhang’s original multistage
PIC detector is that the tentative decisions at the output of each
stage of the detector are hard decisions. Much like hard-decision
and soft-decision channel decoding, various modifications to the
hard-decision multistage PIC detector have since been proposed
that instead use soft tentative decisions. As one example of this
approach, the linear PIC detector (first described in [8]) replaces
the nonlinear sgn function of the hard-decision PIC detector
with a linear mapping. The performance of the linear PIC de-
tector has been extensively investigated, e.g., [9]–[12]. Other
examples of the soft-decision approach are partial interference
cancellation [13], weighted linear/nonlinear cancellation [14],
linear clipping and deadzone nonlinearities [15], [16], and sig-
moidal interference cancellation nonlinearities [17]–[19].

While soft-decision approaches have been shown to outper-
form the original hard-decision multistage PIC detector in some
cases, the hard-decision detector remains important for several
reasons. First, the hard-decision detector tends to require less
computational resources, at least on a per-iteration basis, than
the soft-decision approaches. This is especially true in CDMA
communication systems with antipodal modulation [binary
phase shift keying (BPSK) or quaternary phase shift keying
(QPSK)]. Second, as discussed in this paper, it is quite simple
to determine when the hard-decision multistage PIC detector
has converged to a stable state. It is more difficult, in general,
to determine when convergence has occurred in a soft-decision
detector. Finally, the optimum (joint maximum likelihood)
decisions are known to be a fixed point of the hard-decision
multistage PIC detector. While convergence to the optimum
fixed point is not guaranteed, it is still a desirable property
and intuitively explains the near-optimum performance of the
hard-decision multistage PIC detector in some cases. This
property is lost when soft tentative decisions are used.

In addition to the original work in [5] and [6], various perfor-
mance aspects of the hard-decision PIC detector have also been
investigated in [20]–[24]. These investigations have primarily
focused on the overall output performance of the detector and
not on the dynamics or internal structure of the iteration. While
good performance is seen in many cases, it is clear that the BER
performance of the hard-decision multistage PIC detector is not
equivalent to that of the optimum detector, even for an infinite
number of PIC stages. What is less clear is why. The first main
contribution of this paper is an investigation into this question
through a study of the dynamics of the hard-decision multistage
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PIC detector. We show that the suboptimum performance of the
hard-decision multistage PIC detector is due to the iteration po-
tentially possessing one or more suboptimum fixed point and/or
limit cycle attractors. We also show that limit cycles are often
the dominant cause of poor performance.

Based on these findings, the second main contribution of this
paper is the development of a new approach toward improving
the performance of the hard-decision multistage PIC detector.
Research to date on improving the performance of PIC detec-
tion can generally be classified into soft-decision approaches
or a modified initialization approaches (e.g. initializing the
hard-decision PIC detector with decorrelator outputs as pro-
posed in [6]). The new approach described in this paper is a
class of algorithms that reactively mitigate limit cycle behavior.
The proposed algorithms do not modify the interference can-
cellation nonlinearity or the initialization of the hard-decision
PIC detector but rather observe the output of the hard-deci-
sion PIC iteration and reactively correct for limit cycles when
they are detected. The advantages of this approach are that
the correction only needs to be applied when needed, the
desirable properties of the original hard-decision multistage
PIC detector are retained while the undesirable properties are
mitigated, and the computational complexity can be kept low.

The remainder of this paper is organized as follows. Section II
describes the multiuser CDMA system model. Section III de-
scribes the hard-decision multistage PIC detector and presents
new results on its convergence behavior. Section IV exploits the
results of the prior section to develop a class of reactive limit
cycle mitigation algorithms and evaluates the tradeoff between
the performance and computational complexity of these algo-
rithms. Section V then summarizes the conclusions of this work.

II. SYSTEM MODEL

We assume a synchronous CDMA multiuser communication
scenario with binary signaling, nonorthogonal transmissions,
and an additive white Gaussian noise channel. The communica-
tion system model is identical to the basic synchronous CDMA
model described in [1]. The number of users in the system is de-
noted by and all multiuser detectors considered in this paper
operate on the -dimensional matched filterbank output given
by the expression

(1)

where is a symmetric matrix of normalized user
signature crosscorrelations such that for
and for all , is a diagonal matrix
of positive real amplitudes, is the vector of i.i.d.
equiprobable binary user symbols, is the standard deviation
of the additive channel noise, and represents a matched
filtered, unit variance AWGN process, where and

. The channel noise and user symbols are assumed
to be independent.

III. HARD-DECISION MULTISTAGE PIC DETECTION

Under the assumption that the receiver knows the amplitudes
and signature crosscorrelations of all the users in the system,

the hard-decision multistage PIC detector’s output after itera-
tion is given in vector form as [6]

sgn (2)

where is the -vector of tentative binary decisions at the
output of the th iteration, and sgn is the elementwise sign
operator defined as

sgn (3)

for . Typically, the PIC iteration is initialized by setting
sgn . The multistage PIC detector’s final decisions

may occur at some pre-determined final iteration or, as is the
case in this paper, the iteration may be monitored such that final
decisions are generated upon convergence of the iteration.

A. Connections to Neural Networks

Despite the computational and conceptual simplicity of (2),
little is actually known about the dynamics of the iteration. In this
section, we describe the connections between the hard-decision
multistage PIC detector and Hopfield neural networks (HNNs)
in order to leverage this relatively large body of theory. It
was first shown in [25] that the hard-decision multistage PIC
detector is a particular case of a discrete HNN. We briefly
review this result here and then describe some of the key
properties from the neural network literature as they apply to
the dynamics of the hard-decision PIC iteration.

HNNs were first proposed by Hopfield in 1982 [26] as a
method of creating a system of “neurons” (also called “nodes”)
capable of performing certain “computational tasks.” Despite
this somewhat vague description, HNNs have since been ap-
plied to a variety of specific computational problems, the most
common of which are the content addressable memory (as orig-
inally described in [26]) and a class of combinatorial optimiza-
tion problems [27]. HNNs can be written with continuous or
discrete time dynamics and the nodes of a HNN can be contin-
uous or discrete valued. Denoting the number of nodes as and
the th node as as with , each node has an
associated threshold value and each pair of nodes ( ,

) has an associated connection weight . The th node
in a discrete valued, discrete time HNN is updated according
the rule sgn , where is
the discrete time index. In fully parallel operation, all nodes are
updated simultaneously, and the update can be written in vector
form as sgn . An HNN is simple if
all self connections are equal to zero (i.e., for all ) and
is symmetric if the connection weights satisfy for all

.
In this context, it is clear that the hard-decision PIC iteration

in (2) is a simple, discrete time, discrete valued HNN operating
in fully parallel update mode. Although the “connection matrix”

in (2) is not symmetric in general, it is pos-
sible to rewrite (2) in an equivalent symmetric form. Using the
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fact that sgn sgn for all and that is a diag-
onal matrix with strictly positive coefficients, we can rewrite (2)
equivalently as

sgn (4)

Since is symmetric with zeros on its diagonal, the hard-
decision PIC iteration is both simple and symmetric.

The explicit relationship between the hard-decision multi-
stage PIC detector and HNNs exposes an interesting connec-
tion between the hard-decision multistage PIC detector and the
optimum (joint maximum likelihood) multiuser detector [28].
Since Hopfield and Tank’s work on the well-known “Traveling
Salesman Problem” [29], HNNs have been used as a computa-
tionally efficient (but suboptimum) approach for solving a va-
riety of combinatorial optimization problems [27]. Iterations of
a HNN are viewed as a method for finding a minimum of a
Lyapunov energy function, usually defined as

. Using (4), we can say that hard-decision PIC iteration
is a method for finding a minimum of the energy function

While this energy function does not have a physical meaning in
the context of CDMA communication systems, it can be shown
that where is a constant that does not de-
pend on and is the likelihood
function [1] representing the relative posterior likelihood that
the symbol vector was transmitted conditioned on the observa-
tion . Since minimization of the energy function is equivalent
to maximization of the likelihood function, the hard-decision
PIC iteration can be viewed as a HNN approach to the com-
binatorial optimization problem of finding the optimum (joint
maximum likelihood) symbol estimates.

B. Attractors of the Hard-Decision PIC Iteration

While simulations of the hard-decision multistage PIC de-
tector show that convergence to the optimum symbol estimates
may occur frequently in some scenarios, it is a suboptimum de-
tector due to the fact that the iteration can converge to local
minima or other spurious attractors of the energy function. An
important result from the HNN literature (derived from an anal-
ysis of the Lyapunov energy function) explicitly states that there
are only two types of attractors possible in discrete-time sym-
metric HNNs.

Theorem 1 (Goles [30]): Denote the maximum period of an
attractor of (4) as . If is symmetric, .

In other words, the hard-decision multistage PIC detector
must converge in a finite number of iterations to either a fixed
point (i.e. ) or a limit cycle of period two
(i.e. ). Limit cycles with period
longer than two and chaotic behavior are not possible. The
following three-user example demonstrates both fixed point and
period-2 limit cycle convergence behavior for the hard-decision
multistage PIC detector.

Fig. 1. Three-user hard-decision PIC iteration example. Bits shown as zero
correspond to the BPSK symbol �1.

Example 1: Suppose that ,

and that . Fig. 1 shows the eight possible
states of the tentative decision vector and the flows be-
tween these states specified by (2). The iteration has two fixed
points at and (the latter
being the optimum fixed point) and two states that form a pe-
riod-2 limit cycle at and .
The remaining four states are not attractors of (2).

The fact that the hard-decision multistage PIC detector con-
verges to either a fixed point or a periodic attractor is not par-
ticularly surprising due to the deterministic nature of the update
and the finite number of states. Nevertheless, the fact that peri-
odic attractors are always length two is a powerful result with
practical implications. Specifically, it implies that a hard-deci-
sion multistage PIC detector requires only memory of its last
two states ( bits) in order to determine when an attractor has
been reached. It also implies that the receiver is easily able to
distinguish between fixed point convergence and convergence
to a limit cycle. We will use these facts in Section IV-A in order
to develop new methods for improving the performance of the
hard-decision multistage PIC detector. The following subsec-
tions describe the known properties of the attractors of (2).

1) Properties of Fixed Point Attractors: Proposition 1 below
describes a basic property of the fixed point attractors of (2).

Proposition 1: Given , is a fixed point of (2) if
and only if is a local maximum (neighborhood size of Ham-
ming distance one) of the likelihood function .

The proof of this proposition is given in the Appendix. This
proposition implies that all fixed point attractors of the hard-de-
cision multistage PIC detector must be separated by at least
Hamming distance two (see Example 1). Consequently, the
number of fixed points in (2) is upper bounded by . This
bound tends to be quite loose in most cases. Proposition 1 also
implies that convergence to a suboptimum fixed point results in
at least two decision errors with respect to the optimum symbol
estimates but that convergence to a suboptimum fixed point is
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Fig. 2. Average number of fixed point and limit cycle attractors of the hard-decision PIC iteration for a CDMA system with length N = 16 random spreading
sequences.

better (in terms of likelihood) than convergence to any of its
neighboring states.

The neural network literature also provides some insight into
the properties of the fixed point attractors of (2). Due to the
quadratic nature of the likelihood function, we know that there
is always at least one fixed point attractor: the joint maximum
likelihood symbol vector estimate corresponding to the global
maximum of . It may also be useful to know, given and

, if there are any additional (suboptimum) fixed points in the
iteration. The neural network literature shows that this question
is difficult to answer. Specifically, the question of whether there
are two [31] or three [32] fixed points in a simple, symmetric
HNN with fully parallel updates is -complete. The problem
of determining the exact number of fixed points in the same class
of networks is -complete [31], [32] (see [33] for a definition
of the complexity class ).

Given that it is difficult to compute the number of fixed points
in the iteration (2), it may still be useful to quantify the attrac-
tion radius of a particular attractor in the system. For instance,
Example 1 shows a case where the attraction radius of both
fixed points is zero. In the case of the hard-decision multistage
PIC detector, a general result would give some intuition on the
ability of the detector to “correct errors” in the initial decisions
based on the matched filter outputs. Unfortunately, the problem
of computing the attraction radius of a fixed point in a simple,
symmetric HNN has been shown to be -hard [34]. It was
also shown in [34] that the attraction radius of a fixed point of
(2) cannot even be approximated within a factor of for
any fixed in polynomial time.

In the case when the hard-decision multistage PIC detector
does converge to a fixed point, it would be useful to determine
whether the resulting solution is optimum or suboptimum. Not
surprisingly, this is also difficult. It was shown in [35] that the
question of whether there exists another state having lower
energy (or, equivalently, greater likelihood) than the current
state turns out to be -complete.

While most of the results in this section appear to be nega-
tive, they are presented here because they directly influence the
strategy by which we propose to improve the performance of the
hard-decision multistage PIC detector in Section IV. These re-
sults clearly state that it is difficult to predict the outcome of the
iteration a priori and that, if a fixed point is reached, it is difficult
to determine if the solution is optimum. These facts motivate the

development of the reactive limit cycle mitigation algorithms in
Section IV.

2) Properties of Limit Cycle Attractors: Proposition 2 de-
scribes a basic property of the limit cycle attractors of (2).

Proposition 2: Given and are the two states comprising
a limit cycle attractor of (2), the Hamming distance between
and is at least two.

The proof of this proposition is given in the Appendix. We
note that Proposition 2 does not imply that all of the states of
the limit cycle attractors of (2) must be separated by a Hamming
distance of at least two but only that the two states comprising
a particular limit cycle attractor must be separated by a Ham-
ming distance of at least two. It is possible to generate examples
where a pair of limit cycle attractors (with four total states) will
have neighboring states. We also note that fixed points may be
neighbors of states corresponding to limit cycle attractors. This
is illustrated in Example 1.

C. Convergence Behavior in CDMA Systems with Random
Signature Sequences

This section presents numerical examples that illustrate the
convergence behavior of the hard-decision multistage PIC de-
tector in the case of a CDMA communication system where
each user is assigned a length- binary spreading sequence
that is random, equiprobable from the set , and inde-
pendent of all other users’ spreading sequences. Denoting

as the th user’s random spreading sequence and
as the signature matrix, the signature cross-

correlation matrix is defined as . All of the
results in this section assume that the users are all received at
equal power, i.e., . The signal-to-noise ratio, which is
also equal for all users, is defined as SNR .

Our first result gives some intuition on the numbers of at-
tractors present in the hard-decision PIC iteration as a function
of and SNR. Fig. 2 plots the average number of fixed point
and limit cycle attractors of (2) in the case when the spreading
gain and also plots the average of the ratio of the
number of limit cycle attractors to fixed point attractors. Since
the number of attractors is computationally difficult to estimate
(as discussed in Section III-B1) we performed a brute-force
search over the space of states and were computationally
constrained to considering only values of . Never-
theless, the results show an interesting trend. Specifically, as
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Fig. 3. Probability of the modes of convergence for hard-decision multistage PIC detection with matched filter initialization in a CDMA system with length
N = 16 random spreading sequences. Notation: “FP-opt”: optimum fixed point convergence; “FP-nopt”: suboptimum fixed point convergence; “LC”: period-2
limit cycle.

approaches , the results in Fig. 2 show that the both the
number of fixed point attractors (all but one of which are sub-
optimum) and the number of limit cycle attractors (all of which
are suboptimum) tend to increase rapidly. This implies that the
multistage hard-decision PIC iteration is likely to be plagued by
spurious attractors when is close to and that, at least intu-
itively, convergence to the optimum fixed point is less likely in
these cases. Moreover, the results suggest that limit cycle attrac-
tors tend to be more prevalent than fixed point attractors as
approaches and that the average ratio of limit cycle attractors
to fixed point attractors can be fairly large in these cases.

Our next result considers the probability of convergence to
each type of attractor under the assumption that the hard-deci-
sion multistage PIC detector is initialized with matched filter
decisions. Fig. 3 plots the relative probability of each mode of
convergence in the case when the spreading gain . Due
to the fact that the results require the computation of the joint
maximum likelihood bit estimates, we were again computation-
ally constrained to considering only values of . The
results in Fig. 3 confirm the intuition from Fig. 2 but also show
that, when the hard-decision multistage PIC detector is initial-
ized with matched filter decisions, the relative probability of
limit cycle convegence to suboptimum fixed point convergence
is even more dramatic than the results of Fig. 2 would suggest.

To confirm that these convergence trends are not an anomaly
resulting from the relatively low spreading gain and/or small
number of users, the next result considers the probability of limit
cycle convergence for larger values of and . Surprisingly,
the basic trends seen in Fig. 3 become even more pronounced in
these cases. While it is computationally difficult to distinguish
suboptimum fixed point convergence from optimum fixed point
convergence for large values of , it is easy to distinguish be-
tween limit cycles and fixed point convergence. Using this fact,
Fig. 4 plots the probability of limit cycle convergence (via sim-
ulation) for the case when the all users are received at 10 dB
SNR. These results suggest that limit cycle convergence is very
likely for when and are both large and that
fixed point convergence is very likely for . Sim-
ilar results are observed at other values of SNR with the main
difference being that the transition occurs at slightly different
values of . These results also suggest that when and

are very large, there may be a critical value such that
when , the hard-decision multistage PIC detector

almost always converges to a period-2 limit cycle. A similar re-
sult was proved for the linear multistage PIC detector in [12],
where . A proof of such a result for the hard-decision
multistage PIC detector remains an open problem.

IV. MITIGATION OF LIMIT CYCLES

Based on the results of the prior section that suggest that limit
cycles are often the dominant source of poor convergence be-
havior in the hard-decision multistage PIC detector, this section
proposes a new approach for improving the performance of the
hard-decision multistage PIC detector: reactive limit cycle mit-
igation. A reactive limit cycle mitigation algorithm retains the
original iteration of (2) and only corrects for poor convergence
behavior when it is detected. Although poor convergence be-
havior includes both limit cycles and suboptimum fixed points,
the techniques in this section only correct for limit cycles due to
a) the ease in which they are identified and b) their frequency of
occurrence with respect to suboptimum fixed points, especially
as .

In the following sections we describe three reactive limit
cycle mitigation algorithms with varying performance and
complexity tradeoffs and then numerically compare the perfor-
mance and complexity of these algorithms in CDMA systems
with random signature sequences.

A. Algorithms

This section describes three reactive limit cycle algorithms
with varying performance and complexity. For lack of a better
naming system, we refer to these algorithms as LCM1–LCM3.

LCM1—Full Maximum Likelihood Search: When a limit
cycle is detected, the LCM1 algorithm simply performs a full
combinatorial optimization of the likelihood function, i.e.,

(5)

While computing the joint maximum likelihood solution for all
users’ bits every time a limit cycle occurs is likely to be com-
putationally infeasible in all but very small systems, we present
it here as a benchmark because it establishes a bound on the
performance that can be attained by reactive limit cycle miti-
gation. When the system is in an operating region where limit
cycles occur frequently, e.g., when in Fig. 4, the
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Fig. 4. Probability of convergence to a limit cycle attractor from a matched
filter initialization in a CDMA system with length N 2 f16; 64; 256;1024g
random spreading sequences and all users received at 10 dB SNR.

performance gain of this approach will be significant but the
complexity will be essentially the same as optimum multiuser
detection.

LCM2—Partial Maximum Likelihood Search: One of the
shortcomings of the LCM1 algorithm, in addition to its high
complexity, is that it does not exploit any information obtained
from the results of the hard-decision PIC iteration. The LCM2
algorithm addresses this shortcoming by using the results of
the hard-decision PIC iteration in order to classify users into
two groups: “fixed” and “undecided.” Specifically, denoting the
two known states of the limit cycle as and , the fixed and
undecided user index sets are defined as

fixed and

undecided

The fixed users are the users with bit estimates that are the same
in both states of the limit cycle and the undecided users are the
users with bit estimates that are toggling. Note that denotes
the number of undecided users. Denoting

as the set of all states in with bits that agree with
the decided users, the LCM2 algorithm then finds the maximum
likelihood bit estimates for the undecided users over this set, i.e.,

(6)

The key difference between the LCM1 and LCM2 algorithms
is that the set over which the optimization is performed in (6) is
usually much smaller than the set over which the optimization is
performed in (5). Intuitively, the LCM2 algorithm assumes that

the fixed bits in a period-2 limit cycle are likely to be correct and
that the toggling bits are all unreliable. The LCM2 algorithm
exploits this intuition to perform a joint maximum likelihood
optimization only on the toggling bits, conditioned on the fixed
bits, and typically at a much lower computational cost than a
full, unconditional maximum likelihood search.

We note that the LCM2 algorithm is similar in spirit to the
group detector proposed in [36]. In this context, the group size
corresponding to the original hard-decision multistage PIC de-
tector is one. If a limit cycle occurs, then the users are partitioned
into the fixed and undecided groups of size and , respec-
tively, and a final “group detection” iteration is performed on the

users with toggling bits. Unlike [36], however, the members,
and consequently the sizes, of the groups in the LCM2 algorithm
are dynamically determined by the properties of the limit cycle.

LCM3—Soft Output Combining: The final limit cycle mit-
igation algorithm is the least complex. When a limit cycle
is detected, the LCM3 algorithm generates its bit estimates
by combining the soft output statistics from the two known
states of the limit cycle, and , i.e.,

sgn (7)

where , and . Equivalently,
the LCM3 decision can be expressed as

sgn (8)

This last expression reveals the intuition behind the LCM3
algorithm. All of the “undecided” (as defined in the LCM2
algorithm) users’ decisions effectively cancel each other in (8)
and all of the “fixed” users’ decisions constructively combine.
The LCM3 algorithm generates its final decisions by per-
forming one hard-decision PIC iteration that attempts to cancel
only the estimated interference from the fixed users and does
not attempt to cancel the interference of the undecided users.

Like the LCM2 algorithm, LCM3 exploits the information
contained in the limit cycle states. The complexity of this ap-
proach, however, is much lower than both the LCM1 and LCM2
algorithms.

We now have a few additional remarks.

1) The final decisions generated by the LCM1–LCM3 algo-
rithms are not used to reinitialize the hard-decision multi-
stage PIC detector. While this is certainly possible, it does
not make sense for the LCM1 algorithm since LCM1 de-
cisions are already a fixed point of (2). Our simulations
also suggest that, for the cases tested, little or no gain is
achieved by reinitializing the PIC detector with LCM out-
puts. We also found that it is possible to reenter the same
limit cycle after reinitializing the PIC detector with LCM2
or LCM3 decisions.

2) It is possible to combine the LCM2 and LCM3 algo-
rithms into a hybrid algorithm that achieves almost any
point in performance/complexity space between the two
approaches. Specifically, an integer parameter is spec-
ified such that . When a limit cycle with un-
decided users is detected, is compared to this threshold.
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If , the more complex LCM2 algorithm is used
since the number of states to search is small; otherwise,
the less complex LCM3 algorithm is used. Because of the
occasional occurance of large values of (as discussed
in Section IV-C), this approach can achieve most of the
performance gain of the LCM2 approach at much lower
computational complexity.

B. Performance Comparison in CDMA Systems with Random
Signature Sequences

This section presents performance results for the hard-deci-
sion multistage PIC detector with limit cycle mitigation and
compares the performance of limit cycle mitigation to several
benchmark multiuser detectors. All of the results in this section
assume a CDMA communication system with random length-
spreading sequences and equal power users, as described in
Section III-C.

One of the multiuser detectors considered in this performance
comparison is the partial-cancellation PIC detector first pro-
posed in [14]. The results of this section assume a three-stage
partial-cancellation PIC detector, initialized with matched filter
decisions, and with partial cancellation factors specified as

, , and using the notation of [14].
The hard-decision PIC detector is also initialized with

matched filter decisions. After each stage, its output is com-
pared with the output of the prior stage to determine if the
iteration converged to a fixed point. If not, the output is com-
pared to the output of the stage twice prior to determine if
the iteration entered a period-2 limit cycle. If either of these
results occurs, the iteration is terminated and the hard-decision
multistage PIC detector’s bit estimates are set equal to the
output of the final stage. If the outcome of the iteration is a
fixed point, the limit cycle mitigation algorithms are not used
(the unmodified PIC outputs are used as the LCM decisions).
If the outcome of the iteration is a limit cycle, the appropriate
LCM algorithm is run to generate their final decisions.

The first result in this section considers the BER performance
of the limit cycle mitigation algorithms. Fig. 5 demonstrates the
gain in BER performance obtained with limit cycle mitigation
with respect to the original hard-decision multistage PIC de-
tector and several benchmark detectors. Note that the hard-deci-
sion multistage PIC detector offers very little performance gain
with respect to the matched filter detector when and
actually performs worse than the matched filter detector when

. The LCM1 algorithm performs significantly better
than the unmodified hard-decision multistage PIC detector and
the partial-cancellation PIC detector and shows that large poten-
tial gains are possible with an effective limit cycle mitigation al-
gorithm. The LCM2 algorithm also performs significantly better
than the unmodified hard-decision multistage PIC detector as
well as the partial-cancellation PIC detector and performs al-
most as well as the LCM1 algorithm when . The per-
formance of the LCM2 algorithm degrades with respect to the
LCM1 algorithm as due to the fact that the con-
ditional optimization becomes less reliable. Finally, the LCM3
algorithm shows more modest gains with respect to the un-
modified hard-decision multistage PIC detector and performs

slightly worse than the partial-cancellation PIC detector. Nev-
ertheless, the performance gain achieved by the LCM3 algo-
rithm with respect to the unmodified hard-decision PIC detector
is achieved with almost no additional computation. Overall, the
largest gains for all three limit cycle algorithms are seen when
the number of users is small and the SNR is high.

The second performance result in this section looks at the
BER performance of the limit cycle mitigation algorithms in a
larger system and demonstrates that the hybrid LCM2/LCM3
approach described in Section IV-A can be used to achieve
a desired tradeoff between performance gain and increased
computational complexity. Fig. 6 shows the BER performance
versus the number of users in a CDMA system with length

random spreading sequences. All users are received
at 10 dB SNR. The partial-cancellation PIC detector and limit
cycle mitigation algorithms all demonstrate BER rates signif-
icantly better than the unmodified hard-decision multistage
PIC detector BER, except when the number of users is small
and all algorithms are performing close to the single user
bound. The two hybrid algorithms show the most performance
gain (with respect to the unmodified hard-decision multistage
PIC detector) when the system is approximately half-loaded,
i.e., . The limit cycle mitigation algorithms tend to
perform better than the partial-cancellation PIC detector when
the system is lightly loaded but, due to the fact
that the hybrid LCM2/LCM3 approaches behave more like
LCM3 for large , the partial-cancellation PIC detector tends
to outperform the limit cycle mitigation algorithms in the more
heavily loaded cases .

This result also shows the capacity increase that can be
achieved by the limit cycle mitigation algorithms for a fixed
quality of service. For example, if the users require a BER
of or better, the matched filter can support only two
or fewer users, the unmodified hard-decision multistage PIC
detector can support up to 15 users, the partial-cancellation
PIC detector can support up to 21 users, and the limit cycle
mitigation algorithms can support up to 22, 25, and 28 users,
respectively.

C. Complexity Comparison in CDMA Systems with Random
Signature Sequences

Since the essential tradeoff with any multiuser detector is
complexity for performance, this section evaluates the computa-
tional complexity of the hard-decision multistage PIC detector
and the additional computational complexity required by the
limit cycle mitigation algorithms described in Section IV-A.
The results in this section are intended to provide context for the
potential performance gains of limit cycle mitigation demon-
strated in Section IV-B. All of the results in this section as-
sume a CDMA communication system with random length-
spreading sequences and equal power users received at 10 dB
SNR.

For the purposes of complexity comparison, we assume that
and of (4) are precomputed and available to the hard-deci-

sion PIC detector and limit cycle mitigation algorithms without
any computational cost. In addition, to facilitate the comparison,
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Fig. 5. Bit error rates of hard-decision multistage PIC detection with limit cycle mitigation ( � ) compared with the single user bound ( ), the
optimum joint maximum likelihood ( ) detector, the matched filter ( ) detector, the partial-cancellation PIC detector by Divsalar et al. in [14] ( ), and
the hard-decision multistage PIC detector ( ).

Fig. 6. Bit error rates of hard-decision multistage PIC detection with LCM3
and hybrid LCM2/LCM3 limit cycle mitigation compared to the single user
bound ( ), the matched filter ( ) detector, the partial-cancellation PIC
detector by Divsalar et al. in [14] ( ), and the hard-decision multistage
PIC detector ( ).

we define a complexity unit as one real-binary multiplication1

and one signed addition. When in (4) [or, equivalently, the
term in (2)] is precomputed, the binary nature of

1By “real-binary multiplication,” we mean the multiplication of a real-valued
number by �1.

implies that each iteration of the hard-decision PIC detector
can be computed entirely with real-binary multiplications and
signed additions. No real-real multiplications are required. This
property is in contrast to linear detectors like the linear MMSE
detector and the soft-decision or partial-cancellation versions of
the PIC detector. While these PIC detectors may offer improved
performance in some cases, they also require real-real
multiplications per iteration and consequently tend to require
more computational resources (at least on a per-iteration basis)
than the hard-decision PIC detector. This section focuses on the
computational complexity of multiuser detectors that do not re-
quire any real-real multiplications.

In a given bit interval, the total computational complexity of
the hard-decision multistage PIC detector with or without limit
cycle mitigation can be expressed as

(9)

where is the number of PIC iterations required to reach a
convergent state, is the per-iteration complexity of the
hard-decision PIC detector, and is the computational
complexity of the limit cycle mitigation algorithm (equal to zero
if no limit cycle mitigation is used).

We note that unlike the majority of multiuser detectors where
a deterministic amount of computation is required to compute
the bit estimates in each bit interval, the hard-decision multi-
stage PIC detector requires a nondeterministic amount of com-
putation in each bit interval due to the random nature of and
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Fig. 7. Number of iterations of hard-decision PIC required to reach an attractor from a matched filter initialization for CDMA systems with length-N random
spreading sequences and all users received at 10 dB SNR.

the possibly random nature of (depending on the limit
cycle mitigation algorithm employed). To address this practical
implementation challenge, the following sections provide some
insight into the variable computational requirements of the hard-
decision multistage PIC detector with and without limit cycle
mitigation.

1) Computational Complexity of Hard-Decision Multistage
PIC: The per-iteration computational complexity of the hard-
decision multistage PIC detector is deterministic. Computation
of in (4) requires real-binary multiplications
and signed additions. Subtracting from also
requires signed additions, resulting in a total of
signed additions. Hence, the per-iteration computational com-
plexity of the hard-decision PIC detector is

complexity units. We assume that the sgn operation in (4) and
the binary comparisons required to determine if the iteration has
converged require no additional computational complexity.

The total computational complexity of the hard-decision mul-
tistage PIC detector is nondeterministic due to the fact that the
number of iterations of (2) required to reach an attractor, which
is denoted , is random. No closed-form distribution for
is currently known. The neural network literature does offer an
upper bound on in [30], but this upper bound tends to be
difficult to compute and quite loose in most cases. To provide
some intuition into this quantity, we instead rely on simulations

of a CDMA system with random spreading sequences. Fig. 7
shows the number of iterations required to reach an attractor
when the hard-decision multistage PIC detector is initialized
with the matched filter decisions. The results show the median
number of iterations required to reach an attractor as well as the
maximum number of iterations required to reach an attractor in
90% and 99% of the trials. These results suggest that the system
loading in terms of has a large impact on the number of
iterations required to reach an attractor. These results also sug-
gest that the number of iterations required to reach an attractor,
even in the 99% case, is no worse than linear in and may in
fact be sublinear in in some cases. A proof of this property is
an open problem.

2) Computational Complexity of Limit Cycle Mitigation: In
this section, we quantify the additional complexity required by
the limit cycle mitigation algorithms described in Section IV-A.

LCM1—Full Maximum Likelihood Search: Finding the
maximum of over requires
real-binary multiplications and signed additions under
the assumption that each real-valued comparison involved in
finding the maximum is computationally equivalent to one
signed addition. For reasonably large values of , we can
apply the approximation

(10)

complexity units, where is the indicator function that is
equal to one when the outcome of the hard-decision PIC itera-
tion is a limit cycle and is equal to zero otherwise.



292 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 1, JANUARY 2005

Fig. 8. Overall complexity of hard-decision multistage PIC detection with and without limit cycle mitigation (99% thresholds) compared with optimum multiuser
detection in the case of a CDMA system with random spreading sequences and all users received at 10 dB SNR.

LCM2—Partial Maximum Likelihood Search: Finding the
maximum of over , where is defined in (6),
requires real-binary multiplications and
signed additions assuming that the reduction of the problem
dimension from to requires negligable computation. When

is reasonably large, we can apply the approximation

(11)

complexity units. Note that no indicator function is needed in
this case since unless a limit cycle occurs. In addition,
note that is a random variable for which no closed-form dis-
tribution is currently known. Empirically derived distributions
for in a CDMA system with random spreading sequences are
presented in [37].

LCM3—Soft Output Combining: Assuming that the soft out-
puts from the past two iterations of the hard-decision PIC itera-
tion are available to the LCM3 algorithm, the LCM3 algorithm
requires only signed additions and no multiplications. Hence

(12)

complexity units.
3) Overall Computational Complexity Comparison: This

section combines the results from the prior sections to present
an overall computational complexity comparison between the
hard-decision multistage PIC detector with and without limit
cycle mitigation. We also compare the results to the complexity
of the optimum (joint maximum likelihood) multiuser detector

which has a deterministic computational complexity equal to
complexity units for reasonably large values of .

Fig. 8 shows an overall computational complexity compar-
ison of the optimum multiuser detector (jml), hard-decision
multistage PIC with limit cycle mitigation (lcm1, lcm2, and
lcm3), and hard-decision multistage PIC with no limit cycle
mitigation (hpic). The results show the number of complexity
units required to compute the final bit estimates in 99% of the
trials.

These results show that, when , the computa-
tional complexity of multistage PIC detection with any of the
limit cycle mitigation algorithms tends to be very similar to
that of the original multistage PIC detector. This is due to
the fact that limit cycles occur with very low probability in
this case. When , limit cycles now occur with
greater probability and the LCM1 algorithm has essentially
the same computational complexity as optimum multiuser de-
tection. The LCM2 algorithm has a computational complexity
between the optimum detector and the original multistage PIC
detector that is largely dependant on the distribution of . When

the computational complexity of the LCM2 algo-
rithm appears to be approximately constant as but,
when , computational complexity of the LCM2
algorithm appears to be exponential in . Finally, the LCM3
detector is indistinguishable from the original hard-decision
multistage PIC detector in all cases due to the fact that the overall
complexity of this detector is dominated by the
term.
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As a final remark on the complexity of the LCM2 algorithm,
we note that the 99% complexity results shown in Fig. 8 do
not reflect the occasional large values of that tend to occur
rarely (but with nonzero probability) in the cases tested. These
outliers from the tail of the distribution require a very large
number of complexity units in one bit interval and, in practical
applications, motivate the use of the hybrid LCM2/LCM3 algo-
rithm described in Section IV-A. The parameter of the hy-
brid LCM2/LCM3 algorithm can be specified to provide a 99%
computational complexity curve almost anywhere between the
LCM2 and LCM3 curves and, perhaps even more importantly,
can be specified to provide a strictly upper bounded computa-
tional complexity for the limit cycle mitigation algorithm. This
feature makes the hybrid LCM2/LCM3 approach attractive for
practical applications with limited computational resources.

V. CONCLUSIONS

This paper presents new results on the convergence behavior
of the hard-decision multistage PIC detector and a new approach
toward improving the performance of this detector. Our results
suggest that limit cycles are a significant source of poor per-
formance in the hard-decision multistage PIC detector and we
propose a class of limit cycle mitigation algorithms to reactively
correct for limit cycle behavior. All of the proposed limit cycle
mitigation algorithms retain the desirable properties of the orig-
inal hard-decision multistage PIC iteration while detecting and
correcting for limit cycles only when they occur. Simulation
results suggest that limit cycle mitigation can significantly im-
prove the bit error rate performance of the hard-decision multi-
stage PIC detector in a variety of operating scenarios with the
greatest improvements observed when the number of users is
small with respect to the spreading gain and when the SNR is
high.

The proposed limit cycle mitigation algorithms offer a
tradeoff between performance gain and increased complexity.
The largest performance gains are observed with limit cycle
mitigation algorithms that tend to have complexity exponential
or near-exponential in . For practical applications, a hybrid
algorithm is proposed that allows the specification of a design
parameter to achieve a desired tradeoff in the performance/com-
plexity space.

This paper also highlights the few analytical results that have
been published on the dynamics of the hard-decision multistage
PIC detector and on nonlinear iterative algorithms in general.
There are several relevant open problems in this area, including
the development of analytical tools to better understand of the
asymptotic behavior seen in Fig. 4, the development of better
bounds or distributions on the number of iterations required to
reach a convergent state, and the development of a distribu-
tion on , which is the number of users “participating” in limit
cycles.

Potential future research directions include an investigation
into the dynamics of the asynchronous hard-decision multistage
PIC detector [5] and the development of limit cycle mitigation
algorithms for the asynchronous case. Analysis of multistage
PIC detection and limit cycle mitigation for the general case
of a CDMA system with arbitrary multipath channels that in-
clude the effects of intersymbol interference also remains an
open problem.

APPENDIX

PROOF OF PROPOSITIONS 1 AND 2

Proof of Proposition 1: Denote as the th standard
basis vector and observe that the sign of the th element of is
flipped in . By definition, is a local maximum of
the likelihood function iff

(13)

holds . Expanding and canceling common
terms, we can rewrite (13) as

(14)

where the last term is due to the fact that and
. Since and

, we can divide (14) by to get the
equivalent expression

(15)

Since , we can rewrite (15) as

(16)
which, since , simplifies to

(17)

Since (17) is equivalent to the original expression (13), we con-
clude then that is a local maximum of the likelihood function
iff

sgn (18)

holds . This last expression can be rewritten in
vector notation as

sgn

which, by definition, is equivalent to the statement that is a
fixed point of the hard-decision PIC iteration (2).

Proof of Proposition 2: Let denote the Hamming
distance between the vectors and , both in . Since

and are both in and
, then , and it is sufficient to show

that to prove the Proposition.
We will now prove the Proposition by contradiction. De-

note as the th standard basis vector, and suppose that
. This is equivalent to

for one particular and

(19)
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The hard-decision PIC iteration (2) states that

sgn (20)

and also that

sgn (21)

Since ,
the right-hand sides of (20) and (21) are identical, implying that

. However, by the limit cycle assump-
tion of the Proposition, ; hence,

, which is a direct contradiction of
(19) since . Hence,
is impossible under the assumptions of the Proposition, and

.
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