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On the Performance of MIMO Nullforming with
Random Vector Quantization Limited Feedback

D. Richard Brown III, Senior Member, IEEE, and David J. Love, Senior Member, IEEE

Abstract—This paper analyzes the performance of random
vector quantization (RVQ) for limited feedback nullforming in
multi-input multi-output (MIMO) communication systems with
and without receiver coordination. A single-stream scenario is
considered in which one or more primary receivers request
nulls by providing limited feedback to the transmitter. Without
receiver coordination, each primary receiver informs the trans-
mitter of its best beamforming precoding vector. The transmitter
then selects a zero-forcing precoding vector orthogonal to all
of the beamforming precoding vectors. With receiver coordina-
tion, the primary receivers feed back the common precoding
vector that minimizes the average interference. In both cases,
secondary receivers in the network do not provide feedback and
experience channels statistically equivalent to a single-antenna
fading channel. Analytical results show that, for a system with
K primary receivers and random codebooks with N = 2B

precoding vectors, the mean received power at the primary
receivers is upper bounded by N−1/K = 2−B/K with or without
receiver coordination. Exact results are also derived for the
K = 1 receiver case. Numerical results verify the scaling and
also show that systems with receiver coordination outperform
those without receiver coordination by a constant gap for large
N in terms of average interference.

Index Terms—Antenna arrays, nullforming, zero-forcing, lim-
ited feedback, random vector quantization, MIMO communica-
tion, interference mitigation.

I. INTRODUCTION

IN wireless communication systems, antenna arrays can be
used to steer transmitted signals toward intended receivers

and away from unintended receivers. The benefits of antenna
arrays and directional transmission are manifold and include
increased range, increased rate, increased security, and re-
duced interference [1]–[4]. The potential for steering nulls
[5] to avoid interference in certain directions is particularly
appealing because, unlike strong beams which require many
antenna elements, deep nulls can be achieved with as few as
two antenna elements. In other words, nullforming can provide
significant margin between the power received at intended and
unintended receivers with small arrays.

Both beamforming and nullforming require channel state
knowledge at the transmitter to achieve the desired directivity
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pattern. In some cases, e.g., time division duplexed (TDD)
channels with reciprocal transceivers, channel estimates can
be inferred from channel reciprocity. More often, however,
it is necessary to estimate the channels at the receiver and
provide some sort of feedback to the transmitter to facilitate
multi-antenna transmission with a desired directivity pattern
[6]. Since feedback creates overhead, several limited-rate feed-
back techniques have been developed recently for multi-input
multi-output (MIMO) and multi-input single-output (MISO)
systems, for example see [7]–[20] and the references therein.
These techniques are typically based on vector quantiza-
tion and usually require carefully designed precoding vector
codebooks to achieve good performance with low feedback
overhead.

Among the various limited-rate feedback techniques, ran-
dom vector quantization (RVQ) is appealing since the code-
book, which is known to both the transmitter and the receiver,
is randomly generated independently of the channel realiza-
tion. RVQ was first proposed in [21], [22] and was shown to
be asymptotically optimal for beamforming as M,N → ∞
in [23], [24] where M is the number of transmit antennas
and N is the number of elements in the precoding vector
codebook. RVQ has received further analysis in [25]–[29].
The performance of RVQ for a MISO beamforming system
was studied in [30] where it was shown that the beamforming
loss due to RVQ was on the order of N− 1

M−1 . Note that, in
beamforming systems with a total transmit power constraint,
the received power grows linearly with M . Hence, to achieve
a significant margin between the power received at intended
and unintended receivers in a beamforming system, M must be
large. The results in [30] imply, however, that when M is large
the codebook size N must also be large to avoid significant
beamforming loss from RVQ with respect to unquantized
channel estimates.

In this paper, we analyze the performance of MIMO null-
forming with RVQ limited feedback in systems with and
without receiver coordination. Our focus is on a single-stream
scenario where one or more “primary” receivers provide
feedback to the transmitter to facilitate nullforming toward
these receivers. “Secondary” receivers in the network do not
provide feedback to the transmitter and experience channels
statistically equivalent to a single-antenna fading channel. Ex-
amples of applications under this model include (i) jamming,
(ii) cognitive radio, and (iii) overlay networks. In the jamming
scenario, the primary receivers are “friendly” receivers that
provide feedback to avoid being jammed and the secondary
receivers are “unfriendly” receivers that we wish to jam. In the
cognitive radio and overlay network scenarios, the transmitter
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in the secondary network receives feedback from users in
the primary network (the primary receivers) and steers nulls
toward these users while transmitting a single stream to users
in the secondary network (the secondary receivers). Since the
statistics of the received power at the secondary users are
independent of the transmitter’s normalized precoding vector,
our analysis focuses on quantifying the mean received null
power at the primary receivers as a function of the number of
transmit antennas M , number of primary receivers K < M ,
and RVQ codebook size N .

For systems without receiver coordination, we analyze an
approach similar to [17] where each primary receiver feeds
back the index of its best beamforming vector and the trans-
mitter computes a zero-forcing precoding vector orthogonal to
all of the beamforming vectors. For codebooks with N = 2B

codewords, this approach requires a total of KB bits of
feedback. Note that [17] considers a multi-stream scenario
with K = M and characterizes the SINR at each receiver. In
this paper, we consider a single-stream scenario with K < M
primary receivers where the goal is to minimize the mean
received power at the primary receivers.

For systems with receiver coordination, the primary re-
ceivers exchange channel estimates and select the precoding
vector from a common codebook that minimizes the average
interference across all of the primary receivers. This approach
requires less feedback (B bits rather than KB bits) and
also directly optimizes the performance metric through the
feedback of the best joint nullforming vector, rather than
indirectly computing a precoding vector orthogonal to the
individual beamforming vectors.

Our main contribution is the development of scaling results
for the mean received power, i.e., the average interference, at
the primary receivers. In particular, we show that the mean
received power at the primary receivers has an upper bound
that scales as N−1/K = 2−B/K with or without receiver
coordination. In other words, a 3 dB reduction in mean
received power can be achieved by increasing the number of
RVQ codebook vectors by a factor of 2K . While the analysis
leads to identical bounds on the mean received power for
nullforming with and without receiver coordination, we also
derive exact results for the K = 1 receiver case that are dif-
ferent for systems with and without receiver coordination and
provide numerical results showing that systems with receiver
coordination outperform those without receiver coordination
by a constant gap for large N in terms of mean received
power. This gap can be overcome by using larger codebooks
in systems without receiver coordination.

The paper is organized as follows. Section II provides an
overview of the nullforming systems under consideration, in-
cluding with and without receiver coordination. A probabilistic
analysis of the average null depth is presented in Section
III. Simulation results verifying the analysis are provided in
Section IV. We conclude in Section V.

Notation: Vectors and matrices are denoted by boldface
letters. R, C, and N+ denote the real, complex, and positive
natural numbers, respectively. The matrix I and the vector
ek denote identity matrix and the kth standard basis vector
corresponding to the kth column of I . ‖·‖ represents the
Euclidean norm of the enclosed vector. We use E[·] and

M-antenna
transmitter

primary
receiver 1

primary
receiver K

g1

gK

Fig. 1. MIMO system model. Secondary receivers are not shown.

(·)H for expectation and complex conjugate transposition,
respectively. We also use

Γ(x) =

∫ ∞

0

tx−1e−t dt. (1)

to denote the Gamma function and

β(s, t) =
Γ(s)Γ(t)

Γ(s+ t)
(2)

to denote the beta function [31].

II. SYSTEM MODEL

We consider the MIMO system shown in Fig. 1 with an
M ≥ 2 antenna transmitter and 1 ≤ K < M single-antenna
primary receivers.

The vector channel from the transmitter to primary receiver
k is denoted as gk ∈ CM×1. It is assumed that E[gk] = 0 and

E[gjg
H
k ] =

{
2I j = k

0 otherwise

where each element of gk is a proper complex Gaussian
random variable with independent unit-variance real and imag-
inary parts. We also define the normalized channel from the
transmitter to primary receiver k as

g̃k =
gk

‖gk‖
and the normalized MIMO channel matrix

G̃ = [g̃1, . . . , g̃K ] ∈ C
M×K . (3)

The primary receivers are assumed to have error-free feedback
links to the transmitter for the purpose of conveying one or
more precoding vector indices. These precoding vector indices
are then used by the transmitter to compute/select a precoding
vector w ∈ CM×1 such that the interference is minimized at
the primary receivers. Using this set-up, we assume that the
kth user has input-output equation

yk = swHgk + zk (4)

where yk is the received signal, s is the transmitted signal
with E[|s|2] = P, and zk is additive white Gaussian noise
distributed as CN (0, σ2).

We can further denote the channel to a secondary receiver
as g0. We assume g0 is independent and identically distributed
with respect to the primary receiver channels {gk} and that
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the secondary receiver does not provide feedback to the
transmitter. Since the transmitter’s precoding vector w is
computed only as a function of the primary receiver channels
{g1, . . . , gK}, it is independent of g0. This implies that the
effective channel at the secondary receiver is equivalent in
distribution to a single antenna Rayleigh fading channel with
mean received power E[|gH

0 w|2] = 2 assuming unit-norm
precoding vectors.

Since the received power distribution at a secondary receiver
is independent of the precoding vector, our focus is on
analyzing the effect of feedback on the mean received power
at the primary receivers. The following sections describe the
feedback protocols with and without receiver coordination.

A. Nullforming without Primary Receiver Coordination

In the absence of receiver coordination, a zero-forcing
scheme similar to [17] can be used to steer nulls toward the
primary receivers. Each primary receiver k feeds back B bits
that represent a quantized version of the channel’s direction
g̃k. The transmitter then computes a precoding vector that
steers nulls toward all K reconstructed channels.

Note that G̃ has at most rank K. This means that we can
always find an M×(K+1) orthonormal matrix Aopt such that
each gk lies in the column space of Aopt. If the transmitter and
primary receivers somehow had access to Aopt, each primary
receiver k could project gk onto Aopt and quantize the unit
vector AH

optgk/‖AH
optgk‖. The transmitter would then be left

with the problem of finding the null space of the (K+1)×K
matrix AH

optG̃. Because the unit sphere in CK+1 when taking
into account phase invariance (i.e., the Grassmann manifold
of one-dimensional subspaces) is of dimension K, rather than
M − 1, each primary receiver’s quantizer uses B/K bits per
dimension instead of B/(M − 1) bits per dimension. This
improved bit allocation reduces the channel distortion at the
transmit side after reception of the feedback signals.

Unfortunately, the matrix Aopt is not known to the transmit-
ter or the receivers performing quantization. Nevertheless, we
can still achieve a B/K bit allocation per dimension by pro-
jecting the quantization problem to an arbitrary reduced sub-
space. We assume each primary receiver has an independently
generated codebook of unit-norm randomly generated complex
vectors Vk = {vk,1, . . . ,vk,N} with vk,i = uk,i/‖uk,i‖
and with {uk,1, . . . ,uk,N} all (K + 1)-dimensional vectors
consisting of independent and identically distributed zero-
mean, unit-variance complex Gaussian random variables. The
transmitter is assumed to know all of the codebooks.

After estimating its vector channel from the transmitter,
each primary receiver first computes

h = AHgk

where A ∈ C
M×(K+1) is an arbitrary but common unitary

matrix satisfying AHA = I that projects the vector channels
into a (K + 1)-dimensional subspace. Each primary receiver
then finds the index of the codebook vector that maximizes the
inner product with the receiver’s reduced-subspace channel,
i.e.,

i(k)

opt = argmax
i∈{1,...,N}

|vH
k,ih̃k|2

where

h̃k =
hk

‖hk‖ =
AHgk

‖hk‖ =
‖gk‖
‖hk‖A

H g̃k. (5)

Note that, since g̃k is isotropic and A is unitary, h̃k is also
isotropic. Each primary receiver then feeds the index i(k)

opt back
to the transmitter to facilitate computation of a zero-forcing
precoding vector. Note that each primary receiver feeds back
B = log2(N) bits to the transmitter for a total of KB bits of
feedback.

After receiving feedback from all of the primary receivers,
the transmitter forms the matrix

V =
[
v
1,i

(1)
opt

· · · v
K,i

(K)
opt

]
∈ C

(K+1)×K

from the known RVQ codebooks. Note that the rank of V is at
most K , hence V H has a nonempty nullspace. The transmitter
then computes a unit-norm M × 1 complex precoding vector
as wopt = Avopt where vopt ∈ CK+1 is a unit-norm vector
in the nullspace of V H . The vector vopt can be computed,
for example, by performing a singular value decomposition
on V H . The right-singular vectors of V H corresponding to
the one or more singular values of V H equal to zero provide
an orthonormal basis for the nullspace of V H [32]. Also note
that ‖wopt‖ = 1 since AHA = I .

B. Nullforming with Primary Receiver Coordination

In the case when the primary receivers can coordinate
by exchanging channel estimates prior to sending feedback
to the transmitter, we assume the transmitter and primary
receivers all share a single common codebook of unit-
norm randomly generated complex precoding vectors W =
{w1, . . . ,wN} with wi = ui/‖ui‖ and with {u1, . . . ,uN}
all M -dimensional vectors consisting of independent and iden-
tically distributed zero-mean, unit-variance complex Gaussian
random variables. Note that the statistics of the codebook are
the same as in the case without receiver coordination, but here
each codeword is an element of CM and all of the primary
receivers share a common codebook.

After estimating the vector channels from the transmitter,
the primary receivers coordinate by exchanging unquantized
channel estimates. One or more primary receivers then search
through the common codebook to determine the index of the
precoding vector that minimizes the average power over all of
the primary receivers, i.e.,

iopt = argmin
i∈{1,...,N}

1

K

K∑
k=1

|wH
i g̃k|2.

Once the optimal precoding vector is found, only one primary
receiver then needs to feed back the integer value of iopt to
facilitate nullforming by the transmitter. In this case, only B =
log2(N) bits of feedback are required. The selected precoding
vector is then used directly by the transmitter.

In this context, receiver coordination effectively causes the
separate single-antenna primary receivers to behave as a single
multi-antenna primary receiver since we assume no loss of
information in the exchange of channel estimates. This is
equivalent to a M ×K single-user MIMO system for which
we wish to minimize the average power received over the K
receive antennas.
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C. Remarks

We briefly mention here some qualitative differences in
nullforming with and without receiver coordination. From the
previous discussion, it is evident that receiver coordination can
provide (a) reduced feedback overhead (B total bits versus
KB total bits without receiver coordination), (b) reduced
requirements for codebook memory at the transmitter due to
the use of a common codebook, and (c) reduced computational
requirements at the transmitter since the feedback directly
specifies the best precoding vector and does not require
the transmitter to perform any additional calculations. In
particular, with respect to point (b), a system with receiver
coordination requires only one codebook irrespective of the
number of primary receivers K . Without receiver coordination,
a family of independent RVQ codebooks must be stored
at each primary receiver and at the transmitter for each
K ∈ {1, . . . ,M − 1}.

The tradeoffs of receiver coordination, beyond the obvi-
ous requirement for a backhaul or local area network over
which channel estimates can be exchanged, include (a) ad-
ditional computational burden at the primary receivers and
(b) potential for increased latency since channel estimates
must be exchanged before the optimal precoding vector can
be determined. Effectively, receiver coordination trades off
feedback overhead, codebook storage space, and transmitter-
side processing for local area network overhead and receiver-
side processing. This tradeoff may be appealing in scenarios
where feedback overhead is costly.

Finally, note that, with or without receiver coordination, the
primary receivers must know the number of transmit antennas
M to select the best RVQ precoding vector(s). In the case
without receiver coordination, the primary receivers must also
know K in order to select the common unitary projection
matrix A. A table of A matrices, indexed by M and K , could
be computed and distributed in advance among the primary
receivers to facilitate efficient precoding vector calculations
in changing network conditions.

III. ANALYSIS

This section analyzes the performance of nullforming in
terms of the mean normalized received power observed by
the primary receivers with and without receiver coordination
as a function of the parameters K , M , and N .

A. Nullforming without Primary Receiver Coordination

As discussed in Section II-A, in the absence of receiver
coordination each primary receiver finds the codebook vector
that maximizes the inner product with the receiver’s reduced-
subspace channel. Denoting the normalized received power at
primary receiver k when the transmitter uses the precoding
vector wopt as

ν(k)

opt = |wH
optg̃k|2 (6)

and the average normalized received power as

νopt =
1

K

K∑
k=1

ν(k)

opt (7)

the following Theorem establishes an upper bound on the
expected value of νopt.

Theorem 1. In a MIMO system with K ≥ 1 primary receivers
with independently generated N -vector RVQ codebooks and
M > K transmit antennas, the expected value of the average
normalized received power without receiver coordination is
upper bounded as

E [νopt] ≤ K + 1

M
Nβ

(
N,

K + 1

K

)
≤ N−1/K (8)

where β(s, t) is the beta function defined in (2).

Proof: From (6), the normalized power at the kth primary
receiver when the precoding vector wopt = Avopt is used can
be written as

ν(k)

opt = |vH
optA

H g̃k|2

=
‖hk‖2
‖gk‖2

· |vH
opth̃k|2 (9)

where the second equality is from (5). Using an orthogonal
decomposition [32], we can write

h̃k = av
k,i

(k)
opt

+ bnk

where nk is a unit vector orthogonal to v
k,i

(k)
opt

and where

a and b are scalars denoting the components of h̃k parallel
and orthogonal to v

k,i
(k)
opt

, respectively. Denoting the maximum
inner product at primary receiver k as

ν(k)

max =

∣∣∣∣vH

k,i
(k)
opt

h̃k

∣∣∣∣2 ,
we have

a = ejθ
√
ν(k)
max and

b =
√
1− ν(k)

max

where θ is the phase of the projection of h̃k onto v
k,i

(k)
opt

. From
(9), we can then write

ν(k)

opt =
‖hk‖2
‖gk‖2

∣∣∣vH
opt

(
av

k,i
(k)
opt

+ bnk

)∣∣∣2
=

‖hk‖2
‖gk‖2

(1− ν(k)

max)|vH
optnk|2 (10)

≤ ‖hk‖2
‖gk‖2

(1− ν(k)

max)

where the second equality results from the fact that vopt is
orthogonal to v

k,i
(k)
opt

for all k and the final inequality results
from the fact that both vopt and nk are unit vectors.

To compute the expected value of this upper bound, we can
perform an iterated expectation by first conditioning on gk.
We have

E[ν(k)

opt | gk] ≤
‖hk‖2
‖gk‖2

(1− E[ν(k)

max | gk])

=
‖hk‖2
‖gk‖2

Nβ

(
N,

K + 1

K

)
where we have used the result that

E [ν(k)

max | gk] = E [ν(k)

max] = 1−Nβ

(
N,

K + 1

K

)
(11)
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from [30, Corollary 1] where β(s, t) is the beta function
defined in (2). The unconditional expectation then follows as

E[ν(k)

opt] ≤ E
[
E[ν(k)

opt | gk]
]

= E

[‖hk‖2
‖gk‖2

]
Nβ

(
N,

K + 1

K

)

= E

[
gH
k AAHgk

gH
k gk

]
Nβ

(
N,

K + 1

K

)

To compute E
[
gH
k AAHgk

gH
k gk

]
, recall that AHA = I ∈

R
(K+1)×(K+1). Hence, we can write AAH = TDTH where

D ∈ RM×M is a diagonal matrix with K+1 elements equal to
one and remaining elements equal to zero and T ∈ CM×M is
a unitary matrix of orthonormal eigenvectors of AAH . Hence,
since TTH = I, we can write

E

[
gH
k AAHgk

gH
k gk

]
= E

[
gH
k TDTHgk

gH
k TTHgk

]

= E

[
xH
k Dxk

xkxk

]
=

K + 1

M

where we have used the fact that xk = THgk is isotropic
since gk is isotropic and T is unitary. Finally, we use the
result

Nβ

(
N,

K + 1

K

)
≤ N−1/K

from [17, Appendix II] and the fact that K +1 ≤ M to write

E[ν(k)

opt] ≤
K + 1

M
Nβ

(
N,

K + 1

K

)
≤ N−1/K

which is the desired result.
The result in Theorem 1 implicitly highlights the benefit

of reduced subspace quantization. Note that the scaling is
of the form N−1/K = 2−B/K , which means the number
of bits per dimension is in the exponent. If a standard RVQ
quantizer, which uses B

M−1 bits per dimension, is employed
in a system without receiver coordination, the scaling is of the
form N−1/(M−1). The improvement in the scaling is due to
the fact that a reduced subspace allows us to quantize using
B/K bits per dimension.

The following Corollary establishes an exact result for the
performance of nullforming in the special case of a single
primary receiver (K = 1) when the primary receiver uses the
feedback protocol in Section II-A.

Corollary 1. In a system with K = 1 primary receiver and
M > K transmit antennas, the expected value of the minimum
received power over an N -vector RVQ codebook is

E [νopt] =
2

M
Nβ (N, 2) (12)

when the primary receiver feeds back the index of its best
beamforming vector.

Proof: Referring to the exact expression for ν(k)

opt in (10)
and since K = 1, we know nk ∈ C2. Moreover, since both

nk and vopt are orthogonal to v
k,i

(k)
opt

, they must be collinear

in a two-dimensional vector space. Hence |vH
optnk| = 1 and

ν(k)

opt =
‖hk‖2
‖gk‖2

· (1− ν(k)

max).

The desired result then follows directly from (11) and the
subsequent analysis in the proof of Theorem 1.

Note that Theorem 1, while applicable to general K < M ,
only provides an upper bound on the expected received power.
Corollary 1, while restricted to the case when K = 1,
establishes an exact result for the expected receive power when
nullforming to a single primary receiver. Also note that an
upper bound for the single primary receiver case follows from
the fact that β(N, 2) ≤ N−2 as

E[ν(k)

opt] ≤
2

MN
(13)

which becomes tight as N → ∞.
In addition, the results in Theorem 1 and Corollary 1 can

easily be interpreted in terms of non-normalized SNR. Using
(4) and (6), the SNR of the kth user is given by

SNRk =
|wH

optgk|2P
σ2

= ν(k)

opt

‖gk‖2P
σ2

,

and the average SNR across all users is

SNR =
P

Kσ2

K∑
k=1

ν(k)

opt‖gk‖2.

The average SNR can be easily bounded as

SNR ≤ P maxk ‖gk‖2
Kσ2

K∑
k=1

ν(k)

opt

=
P maxk ‖gk‖2

σ2
νopt

≤ P

σ2

(
K∑
�=1

‖g�‖2
)
νopt. (14)

We can further average over the channel distribution to yield

E
[
SNR

]
≤ PMK

σ2
E [νopt] .

B. Nullforming with Primary Receiver Coordination

In the case with receiver coordination, the primary receivers
exchange channel estimates and find the codebook vector that
minimizes the normalized received power averaged over the
primary receivers. The average normalized received power
when the transmitter uses precoding vector wi can be written
as

νi =
1

K

K∑
k=1

|wH
i g̃k|2. (15)

The minimum average normalized received power over the
common N -vector RVQ codebook is then

νmin = min
i∈{1,...,N}

νi. (16)

The following Theorem establishes an upper bound on the
expected value of νmin.



BROWN and LOVE: ON THE PERFORMANCE OF MIMO NULLFORMING WITH RANDOM VECTOR QUANTIZATION LIMITED FEEDBACK 2889

Theorem 2. In a MIMO system with K ≥ 1 primary receivers
with a common N -vector RVQ codebook and M > K
transmit antennas, the expected value of the minimum average
normalized received power with receiver coordination is upper
bounded as

E [νmin] ≤ Nβ

(
N,

K + 1

K

)
≤ N−1/K . (17)

Proof: Since the normalized channel matrix G̃ defined in
(3) spans at most a K-dimensional subspace of CM , we can
apply a unitary matrix U ∈ CM×M to the channels and let
F̃ = UG̃ correspond to a rotated version of the normalized
channel vectors such that (M − K) rows of F̃ are equal to
zero. Without loss of generality, we will assume U is chosen
such that the final (M − K) rows of F̃ are equal to zero.
Denoting

F̃ = [f̃1, . . . , f̃K ] ∈ C
M×K

and
f̃k = [f̃1,k, . . . , f̃K,k, 0, . . . , 0︸ ︷︷ ︸

M−K zeros

]�

we can then write

νi =
1

K

K∑
k=1

|wH
i UH f̃k|2

=
1

K

K∑
k=1

∣∣∣∣∣
(
wH

i UH
) K∑

�=1

f̃�,ke�

∣∣∣∣∣
2

where e� is the �th standard basis vector in RM . Letting
ci = Uwi = [ci,1, . . . , ci,M ]� and noting that ci is also an
isotropically distributed unit vector in CM , we can further
write

νi =
1

K

K∑
k=1

∣∣∣∣∣cHi
K∑
�=1

f̃�,ke�

∣∣∣∣∣
2

≤ 1

K

K∑
k=1

K∑
�=1

|ci,�|2
∣∣∣f̃�,k∣∣∣2

≤
K∑
�=1

|ci,�|2

= ηi (18)

for i = 1, . . . , N . Note that the first inequality results from the
Cauchy-Shwarz inequality and the second inequality results

from the fact that
∣∣∣f̃�,k∣∣∣2 ≤ 1 for all � and k. Also note that

ηi is a random variable that upper bounds νi for all channel
and precoding vector codebook realizations.

The cumulative distribution function (CDF), denoted by
Fηi(·, L), and probability density function (PDF), denoted by
fηi(·, L), of ηi are derived in (21) and (22), respectively, in
Appendix A with L = M−K . While it is difficult to use these
results directly to compute the CDF and PDF of the minimum

ηmin = min
i∈{1,...,N}

ηi,

for general L, Lemma 1 in Appendix B establishes that a ran-
dom variable drawn from Fηi(x, L) first-order stochastically
dominates a random variable drawn from Fηi(x, L + 1). A

consequence of this result is that a random variable drawn
from Fηi(x, L) will have larger expected value than a random
variable drawn from Fηi(x, L+1) [33]. Hence, we can upper
bound the expected value of ηi by assuming L takes on its
smallest possible value, i.e., L = 1. Under this assumption,
the CDF and PDF of ηi in (21) and (22) simplify to

Fηi(x, 1) = 1− (1− x)

K−1∑
k=0

xk = xK

fηi(x, 1) = KxK−1.

Since {η1, . . . , ηN} are independent and identically distributed
(i.i.d.), the PDF of ηmin can then be expressed as

fηmin(x, 1) = Nfηi(x, 1)(1 − Fηi(x, 1))
N−1

= N
(
KxK−1

) (
1− xK

)N−1

when L = 1. The expected value of ηmin when L = 1 then
follows as

E[ηmin] = NK

∫ 1

0

xK(1− xK)N−1 dx

= Nβ

(
N,

K

K + 1

)
≤ N−1/K

which shows the desired result.
While Theorem 2 provides a general bound for the perfor-

mance of nullforming with receiver coordination, the follow-
ing Corollary establishes an exact result for the performance
of nullforming in the special case of a single primary receiver
(K = 1). In this case, while no receiver coordination occurs,
the primary receiver uses the coordinated feedback protocol
from Section II-B where the feedback corresponds to the index
of the primary receiver’s best nullforming vector.

Corollary 2. In a system with K = 1 primary receiver and
M > K transmit antennas, the expected value of the minimum
received power over an N -vector RVQ codebook is

E[νmin] =
1

N(M − 1) + 1
(19)

when the primary receiver feeds back the index of its best
nullforming vector.

Proof: In the case with K = 1 primary receivers, we
have the normalized received power with precoding vector i
as

νi = |wH
i g̃|2

where we have omitted the k index since there is only a
single primary receiver. Given L = M−1 and an isotropically
distributed precoding vector wi, the CDF of νi can be written
as [11], [30]

Fνi(x, L) =

⎧⎪⎨
⎪⎩
0 x < 0

1− (1− x)
L

0 ≤ x ≤ 1

1 x > 1.

Since the precoding vectors wi are i.i.d., we can write

Prob(νmin > x) = (1 − Fνi(x, L))
N =

(
(1− x)

L
)N
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where νmin is defined in (16). Hence, the CDF of νmin with
an N -vector codebook can be written as

Fνmin(x, L) =

⎧⎪⎨
⎪⎩
0 x < 0

1− (1− x)NL 0 ≤ x ≤ 1

1 x > 1

and the PDF of νmin follows as

fνmin(x, L) =

{
NL (1− x)

NL−1
0 ≤ x ≤ 1

0 otherwise.

The expected value of the received power can then be com-
puted as

E[νmin] = NL

∫ 1

0

x(1 − x)NL−1 dx

=
1

NL+ 1

=
1

N(M − 1) + 1

which shows the desired result.
Note that (19) can be written as

E[νmin] ≤ M/(M − 1)

MN
(20)

and this upper bound is tight as N → ∞. The upper bound
in (20) is equal to the upper bound in (13) when M = 2
and strictly less than the upper bound in (13) when M > 2.
Since the results in (13) and (20) are tight for large N , these
results show that a K = 1 system with best nullforming vector
feedback as described in Section II-B outperforms the same
system with best beamforming vector feedback as described
in Section II-A by a factor of 2(M − 1)/M when the RVQ
codebook is large. As the number of antennas also becomes
large, i.e. M � 1, this performance gain becomes a factor of
two, or 3 dB.

As in the case without primary receiver coordination, the
results in Theorem 2 and Corollary 2 can also be reformulated
in terms of non-normalized SNR. The SNR averaged across
users and channel realizations is bounded as

E
[
SNR

]
≤ KMP

σ2
E [νmin] .

IV. NUMERICAL RESULTS

This section provides numerical results that confirm the
analysis in Section III and compares the performance of RVQ
nullforming with and without primary receiver coordination.
Monte-Carlo simulation results with 1000 iterations are plotted
against the analytical results from Section III. In each iteration
of the Monte-Carlo simulation, the channel vectors gk ∈ CM

are drawn i.i.d. from CN (0, 2I), with unit variance indepen-
dent real and imaginary components, and the precoding vector
codebook is also randomly generated, independently of the
channel. Both the channel vectors and the precoding vectors
are normalized.

Fig. 2 shows the mean normalized received power, averaged
over the channel and codebook realizations, for a K = 1
primary receiver system, M ∈ {4, 16, 64} transmit anten-
nas, and N = 2B precoding vectors per codebook with
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Fig. 2. Mean normalized received power E[νmin] and E[νopt] for a K = 1
primary receiver system as a function of the codebook size 2B and the number
of transmit antennas M . Solid lines are Monte-Carlo simulation results and
dashed lines are analytical results from Section III.

B ∈ {0, . . . , 12}. Since there is only one primary receiver
in this case, this is not a comparison of coordinated receivers
versus uncoordinated receivers, but rather a comparison of a
single primary receiver system with best beamforming vector
feedback versus the same system with best nullforming vector
feedback. We see that there is close agreement between the
analytical results from Corollaries 1 and 2 (dashed black
lines) and the Monte-Carlo simulations. Also note the gaps
for large N = 2B are approximately 1.75 dB, 2.75 dB, and
2.95 dB, respectively, for M = 4, 16, 64 transmit antennas.
These gaps closely agree with the large-N analysis in (13)
and (20) showing the performance gain obtained by feeding
back best nullforming vectors rather than best beamforming
vectors is 2(M − 1)/M .

Fig. 3 shows the mean normalized received power, av-
eraged over the channel and codebook realizations, for a
K = 3 primary receiver system, M ∈ {4, 8} transmit
antennas, and N = 2B precoding vectors per codebook with
B ∈ {0, . . . , 12}. We see that the inner bounds in (8) and
(17) developed in Theorems 1 and 2, respectively, are both
somewhat loose but provide the correct scaling. In fact, the
inner bound (8) for M = 4 and K = 3 coincides with
the inner bound (17) as shown in Fig. 3. The outer bound
N−1/K , common to Theorems 1 and 2, is even looser but also
provides the correct scaling. Receiver coordination also tends
to achieve better nullforming performance, especially as the
number of antennas increases as was seen in the K = 1 case.
In this example, when M = 4 and N � 1, the performance
gap is slightly less than 1 dB, which can be overcome by
increasing the codebook size by a factor of 4 without receiver
coordination. When M = 8 and N � 1, the performance
gap is more than 2.5 dB, or approximately a factor of 8 in
codebook size.

Fig. 4 shows the mean normalized received power, av-
eraged over the channel and codebook realizations, for a
M = 8 transmit antenna system, K ∈ {1, 3, 7} primary
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Fig. 3. Mean normalized received power E[νmin] and E[νopt] for a K = 3
primary receiver system with and without receiver coordination, respectively,
as a function of the codebook size 2B and the number of transmit antennas M .
Solid lines are Monte-Carlo simulation results and dashed lines are analytical
results from Section III.

receivers, and N = 2B precoding vectors per codebook
with B ∈ {0, . . . , 12}. In this example, the analytical results
were scaled by the mean normalized power of an M = 8
random precoding vector, i.e., c = 1

M , to show the scaling
results more directly. The performance gap in dB is similar
for all of the tested values of K but, due to the N−1/K

scaling, the codebook size penalty for systems without receiver
coordination can be quite large. For example, when K = 7,
a system without receiver coordination requires individual
codebooks approximately 32 times larger than the codebook
used in a system with receiver coordination to achieve the
same performance. This penalty is further exacerbated by the
fact that KB bits of feedback are required without receiver
coordination, whereas only B bits of feedback are required
with receiver coordination.

V. CONCLUSION

This paper analyzes the performance of MIMO nullforming
with RVQ limited feedback in single-stream systems with
and without receiver coordination. The results show that the
mean received power at the primary receivers has an upper
bound that scales as N−1/K = 2−B/K for nullforming
systems with or without receiver coordination. Exact analytical
results are also derived for the K = 1 primary receiver
case. Numerical results are provided showing that systems
with receiver coordination outperform those without receiver
coordination by a constant gap for large N in terms of mean
received power.

There are a number of research topics that could build
upon this work. First, practical channels often exhibit spatial
and temporal correlation. Nullforming codebooks could be
designed to utilize spatial correlation rotation techniques simi-
larly to [34], [35]. RVQ codebooks can also be enhanced using
techniques to leverage temporal correlation [36]–[43]. This
could significantly reduce feedback overhead and improve null
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Fig. 4. Mean normalized received power E[νmin] and E[νopt] for a M = 8
transmit antenna system with and without receiver coordination, respectively,
as a function of the codebook size 2B and the number of receivers K . Solid
lines are Monte-Carlo simulation results and dashed lines are analytical results
from Section III with scale factor c = 1

M
.

depth. Finally, it is of interest to quantify the performance loss
caused by channel estimation error.

APPENDIX A
STATISTICAL CHARACTERIZATION OF COORDINATED

RECEIVER NORMALIZED RECEIVED POWER BOUND

From (18), we have defined ηi =
∑K

�=1 |ci,�|2 ≥ νi as a
random variable that upper bounds the normalized received
power (averaged over the receivers) over all channel and
precoding vector codebook realizations. To compute the CDF
of ηi, we can write

Fηi(x) = Prob

(
K∑
�=1

|ci,�|2 ≤ x

)

= Prob

(
a

a+ b
≤ x

)
= Prob

(
a ≤ b

(
x

1− x

))

where a is χ-squared distributed with 2K degrees of freedom,
b is χ-squared distributed with 2(M−K) degrees of freedom,
and a and b are independent. Letting L = M−K and making
the dependence of the CDF on L explicit, we can write for
x ∈ [0, 1] (21) with Fηi(x, L) = 0 for x < 0 and Fηi(x, L) =
1 for x > 1. The PDF of ηi then follows for x ∈ [0, 1] as

fηi(x, L) = L(1− x)L−1
K−1∑
k=0

(
L+ k − 1

k

)
xk

− (1− x)L
K−1∑
k=0

(
L+ k − 1

k

)
kxk−1 (22)

with fηi(x, L) = 0 for x /∈ [0, 1].
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Fηi(x, L) =

∫ ∞

0

Fa

(
b

(
x

1− x

))
fb(b) db

=

∫ ∞

0

(
1− e−b( x

1−x )
K−1∑
k=0

1

k!

(
b

(
x

1− x

))k
)
fb(b) db

= 1−
∫ ∞

0

(
e−b( x

1−x )
K−1∑
k=0

1

k!

(
b

(
x

1− x

))k
)

bL−1e−b

Γ(L)
db

= 1−
K−1∑
k=0

xk

k!(1− x)kΓ(L)

∫ ∞

0

e−
b

1−x bL+k−1 db

= 1−
K−1∑
k=0

xk

k!(1− x)kΓ(L)
(1 − x)L+kΓ(L+ k)

= 1− (1− x)L
K−1∑
k=0

(
L+ k − 1

k

)
xk (21)

APPENDIX B
FIRST ORDER STOCHASTIC DOMINANCE

The CDF, denoted by Fηi (·, L), and PDF, denoted by
fηi(·, L), of the coordinated receiver normalized received
power bound ηi are derived in (21) and (22), respectively,
in Appendix A with L = M − K . The following Lemma
establishes that a random variable drawn from Fηi(x, L) first-
order stochastically dominates a random variable drawn from
Fηi(x, L + 1).

Lemma 1. For fixed x ∈ (0, 1), K ∈ N+, L ∈ N+, a random
variable X drawn from Fηi(x, L), and a random variable Y
drawn from Fηi(x, L + 1), we have X 	FSD Y , i.e. X first
order stochastically dominates (FSD) Y .

Proof: To show strict FSD, we will show 1−Fηi(x, L) >
1− Fηi(x, L + 1), or equivalently

Fηi(x, L+ 1)− Fηi(x, L) > 0.

Defining

α(L, k) =

(
L+ k − 1

k

)

and noting that

α(L + 1, k) =

(
L+ k

L

)
α(L, k)

from (21) we can write

Fηi(x, L+ 1)− Fηi (x, L)

(1− x)L

=

K−1∑
k=0

(
1− (1 − x)

(
L+ k

L

))
α(L, k)xk

(a)

≥
K−1∑
k=0

(
1− (1− x)

(
L+ k

L

))
xk

= x

K−1∑
k=0

xk − 1

L
(1− x)

K−1∑
k=0

kxk

(b)

≥ x

K−1∑
k=0

xk − (1− x)

K−1∑
k=0

kxk

= KxK

> 0

where (a) is from the fact that α(L, k) ≥ 1 and (b) is from
the fact that L ≥ 1 and all of the terms multiplied by 1

L
in the previous equality are positive. Hence Fηi(x, L + 1) −
Fηi(x, L) > 0 for all L ∈ N+ and x ∈ (0, 1).
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