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Abstract—We study a quantized distributed reception scenario
in which a transmitter equipped with multiple antennas sends
multiple streams via spatial multiplexing to a large number
of geographically separated single antenna receive nodes. This
approach is applicable to scenarios such as those enabled by the
Internet of Things (IoT) which holds much commercial potential
and could facilitate distributed multiple-input multiple-output
(MIMO) communication in future systems. The receive nodes
quantize their received signals and forward the quantized received
signals to a receive fusion center. With global channel knowledge
and forwarded quantized information from the receive nodes, the
fusion center attempts to decode the transmitted symbols. We as-
sume the transmit vector consists of arbitrary constellation points,
and each receive node quantizes its received signal with one bit
for each of the real and imaginary parts of the signal to minimize
the transmission overhead between the receive nodes and the
fusion center. Fusing this data is a nontrivial problem because
the receive nodes cannot decode the transmitted symbols before
quantization. We develop an optimal maximum likelihood (ML)
receiver and a low-complexity zero-forcing (ZF)-type receiver at
the fusion center. Despite its suboptimality, the ZF-type receiver
is simple to implement and shows comparable performance with
the ML receiver in the low signal-to-noise ratio (SNR) regime but
experiences an error rate floor at high SNR. It is shown that this
error floor can be overcome by increasing the number of receive
nodes.
Index Terms—Internet of things (IoT), multiple-input mul-

tiple-output (MIMO), quantized distributed reception, spatial
multiplexing.

I. INTRODUCTION

A S more and more internet-enabled things are commonly
used (e.g., computers, smartphones, tablets, home ap-

pliances, sensors, and more), the Internet of Things (IoT)
will change the paradigm of communication systems [1]. In
the IoT environment, devices could be used as distributed
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transmit and/or receive entities allowing massive distributed
multiple-input multiple-output (MIMO) systems to be imple-
mented. Potentially, a large number of built-in sensors in the
home, used to monitor the environment or actuate devices such
as bulbs or locks, could be exploited as transmit/receive entities
to support data transmission by smartphones or labtops. Among
many possible scenarios, we focus on distributed reception for
wireless communication systems in this paper.
Distributed reception for wireless communication systems is

used to provide reliable communication between a transmitter
and a receive fusion center via the help of geographically sep-
arated receive nodes [2]. Wireless channels between the trans-
mitter and the multiple receive nodes are usually well modeled
as independent, resulting in increased diversity gain, and the fu-
sion center estimates the transmitted data using processed infor-
mation from the receive nodes. Preliminary distributed recep-
tion techniques are now adopted in 3GPP LTE-Advanced in the
context of coordinated multipoint (CoMP) reception scenario
for cellular systems [3]–[6] and advanced information theoretic
approaches for fronthaul/backhaul compression for cloud radio
access networks have been proposed in [7]–[9].
There are strong similarities between distributed reception for

wireless communication systems and wireless sensor networks
(WSNs), where the former is aimed at data communications and
the latter is more focused on environment classifications. WSNs
have been extensively studied in references such as [10]–[21].
Many of the works on WSNs can be applied to distributed re-
ception for wireless communication systems. Instead of reusing
hand-optimized processing and fusion rules as in [19]–[21] for
WSNs when performing distributed reception of a communica-
tion signal, it was shown in [22], [23] that by adopting appro-
priate channel codes we can obtain simple, yet powerful pro-
cessing and decoding rules that have good symbol error rate
(SER) performance for a practical range of signal-to-noise ratios
(SNRs). Recently, [24] showed that even simple combining of
hard decisions at the receive nodes can give performance within
2 dB SNR of ideal receive beamforming for wireless communi-
cation systems.
However, most of the prior work on WSNs and distributed

reception for wireless communication systems considered
only detection/estimation of a single-dimensional parameter
or single transmitted symbol. To our knowledge, there are few
papers that discuss multi-dimensional estimation problems.
A few exceptions can be found in [25], [26] which consider
the estimation of a multi-dimensional vector in WSNs with
additive noise at each sensor.
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In this paper, we consider distributed MIMO communica-
tion systems where the transmitter is equipped with multiple
antennas and simultaneously transmits independent data sym-
bols using spatial multiplexing to a set of geographically sepa-
rated receive nodes deployed with a single receive antenna sent
through independent fading channels. Each receive node quan-
tizes its received signal and forwards the quantized signal to
the fusion center. The fusion center then attempts to decode the
transmitted data by exploiting the quantized signals from the
receive nodes and global channel information. This scenario,
i.e., quantized distributed reception, is likely to become popular
with the emergence of massive MIMO systems [27] and IoT be-
cause base stations tend to be equipped with a large number of
antennas in massive MIMO systems and we can easily have a
large number of receive nodes in an IoT environment.
For practical purposes, we assume each receive node quan-

tizes its received signal with one bit per real part and one bit per
imaginary part of the received signal to minimize the transmis-
sion overhead between the receive nodes and the fusion center.
Quantizer design is a non-trivial problem because the receive
nodes are not able to decode the transmitted symbols due to
the fact that each receive node has only one antenna [28]. In-
stead, each receive node quantizes a single quantity, i.e., the
received signal, regardless of the number of transmitted sym-
bols. In this setup, we develop an optimal maximum likelihood
(ML) receiver and a low-complexity zero-forcing (ZF)-type re-
ceiver1 assuming global channel knowledge at the fusion center.
The ML receiver outperforms the ZF-type receiver regardless
of the number of receive nodes and SNR ranges. However, the
complexity of the ML receiver is excessive, especially when
the number of transmitted symbols becomes large. On the other
hand, the ZF-type receiver can be easily implemented and gives
comparable performance to that of the ML receiver when the
SNR is low to moderate, although it suffers from an error rate
floor when SNR is high. The error rate floor of the ZF-type re-
ceiver can be easily mitigated by having more receive nodes.
When the SNR is high, the quantized distributed reception

problem is closely tied to work in quantized frame expansion.
Linear transformation and expansion by a frame matrix in the
presence of coefficient quantization is thoroughly studied in
[31], [32]. A linear expansion method, which is similar to our
ZF-type receiver, and its performance in terms of the mean-
squared error (MSE) were analyzed based on the properties of
a frame matrix, and an advanced non-linear expansion method
relying on linear programming was also studied. The major dif-
ference compared to our problem setting is that [31], [32] do not
assume any additive noise before quantization, while our sce-
nario considers a fading channel (which corresponds to a frame
matrix in frame expansion) with additive noise prior to quanti-
zation at the receive nodes. We rely on some of the analytical
results from [31] for evaluating and modifying our ZF-type re-
ceiver later.
The rest of the paper is organized as follows. In Section II, we

define our systemmodel. TheML and ZF-type receivers are pro-

1The proposed receivers in this paper also can be applied to massive MIMO
detection problems [29], [30].

posed and their characteristics are compared in Section III. Sim-
ulation results that evaluate the proposed receivers are shown in
Section IV, and conclusions follow in Section V.
Notation: Lower and upper boldface symbols denote column

vectors and matrices, respectively. represents the two-norm
of a vector , and are used to denote transpose,
Hermitian transpose, and pseudo inverse of their argument, re-
spectively. and denote the real and complex part
of a complex number , respectively. represents an
all zero vector, denotes an all one vector, and is
used for identity matrix. The expectation operation is
denoted by , and denotes the probability of event .

II. SYSTEM MODEL

We consider a network consisting of a transmitter with an-
tennas, communicating with a receive fusion center that is con-
nected to geographically separated, single antenna receive
nodes. The transmitter tries to send independent data sym-
bols simultaneously by spatial multiplexing2 to the fusion center
via the help of the receive nodes. The received signal at the -th
receive node is given as

(1)

where is the transmit SNR, is the independent and
identically distributed (i.i.d.) Rayleigh fading channel vector be-
tween the transmitter and the -th receive node, is complex
additive white Gaussian noise (AWGN) distributed as
at the -th node, and is the transmitted
signal vector. We assume is from a standard -ary
constellation

which satisfies and . The input-
output relation in (1) can be also written as

where

We further assume that the fusion center can access the full
knowledge3 of for all .
If the fusion center has full knowledge of for all , then

the optimal receiver is given as

where is the cartesian product of of order . However, we
are interested in the scenario when each receive node quantizes
its received signal and conveys the quantized received signal,

2The transmitter also can send a number of symbols smaller than by
adopting precoding or antenna selection, which is outside the scope of this paper.

3Recently, we developed channel estimation techniques for the scenario of
this paper in [33].
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, to the fusion center. Therefore, the fusion center needs to
use other approaches to decode the transmitted symbols in our
problem.
We assume can be forwarded from the -th receive node

to the fusion center without any error. This assumption would
be reasonable because the receive nodes and the fusion center
are usually connected by a very high-rate link or located near
each other in practice. We further assume that the forward link
transmission and the LAN are operated on different time or fre-
quency resources to prevent interference between the two.
To make the problem practical, we assume that the receive

nodes only can perform very simple operation, i.e., they do not
decode the transmitted vector but instead simply quantize
directly. Moreover, to minimize the data transmission overhead
from the receive nodes to the fusion center, we assume each
receive node quantizes using two bits, i.e., one bit for each of
the real and imaginary parts of . Thus, the quantized received
signal can be written as

where is the sign function defined as

and and are quantization thresholds of the real and
imaginary parts of at user , respectively.
With a given realization of , we consider the simple, yet

effective, thresholds

where equalities are based on the assumption that is dis-
tributed as , or equivalently and are
independent and both distributed as , and the entries of
are independently drawn from with equal probabilities,

which gives and for an arbi-
trary combining vector . Although simple, these thresh-
olds are consistent with the optimal threshold design studied in
[25] in an average sense. We assume the quantization thresholds

and for the remainder of this paper.
Once the fusion center receives from all receive nodes, it

attempts to decoded the transmitted data symbols using the
forwarded information and channel knowledge. We define

which is useful in Section III.B. The conceptual explanation of
the scenario is depicted in Fig. 1.

III. QUANTIZED DISTRIBUTED RECEPTION TECHNIQUES

With the knowledge of and at the fusion center, we can
implement different kinds of receivers considering complexity
and performance. We first develop an optimal ML receiver and

Fig. 1. The conceptual figure of distributed reception with multiple antennas
at the transmitter. Each receive node is equipped with a single receive antenna.

low-complexity ZF-type receiver. Then, we discuss the perfor-
mance of receivers regarding system parameters such as and
. We also explain a possible modification of the ZF-type re-

ceiver and analyze the achievable rate of quantized distributed
reception.

A. ML Receiver

We convert the problem of interest to the real domain to fa-
cilitate analysis. This can be done by defining

and as

where

Then, the received signal also can be rewritten in the real
domain as

and the vectorized version of the quantized in the real domain
is given as

(2)

Once the fusion center receives from all receive nodes,
it generates the sign-refined channel matrix according to

where is defined as

(3)
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Because is , (3) can be considered as a sign refinement
of . We let be

where is the size of the constellation . We also define two
sets and using for and
as

With these definitions, we can define a likelihood function as

where is based on the sign re-
finement in (3), is because and have the same
distribution (or the same probability density function) such that

for an arbitrary constant ,
and comes from the fact that is independent for all
and and from distribution . Then, the ML receiver is
given as4

(4)

The complexity of the exhaustive search of the ML receiver
increases exponentially with the number of transmit symbols
in spatial multiplexing, i.e., we need to search over ele-
ments. Therefore, in practice, it is desired to implement a low
complexity receiver for large numbers of transmit antennas.
Remark 1: If the number of receive nodes is less than the

number of transmit antennas , then the decoding performance
at the fusion center would be very poor. This situation will likely
not hold for our problem setting because we can easily have

based on the IoT environment.
Remark 2: Instead of quantizing both the real and imaginary

parts of the received signal at each node, we can have the same
performance on average by quantizing and forwarding only the
real or imaginary part of the received signal with twice the

4A similar ML receiver is also derived in [25].

number of receive nodes. This is based on the assumption that
the real and imaginary parts of the noise are i.i.d. for all .

B. Low-Complexity Zero-Forcing-Type Receiver

The ML receiver defined in (4) has no constraint on the norm
of the transmit vector . To develop our ZF-type receiver, how-
ever, we assume . If is a phase shift keying (PSK)
constellation with for all , this constraint is trivially
satisfied. Even for a quadrature amplitude modulation (QAM)
constellation (that is properly normalized), the constraint can be
approximately satisfied because

when is large and is drawn from with equal probabil-
ities. Simulation results in Section IV show that our ZF-type
receiver works even with not-so-large , e.g., .
Before proposing our ZF-type receiver, we first state the fol-

lowing lemma which establishes the theoretical foundation of
our receiver.
Lemma 1: Define a matrix by stacking

as

(5)

and let be

where for and . Note
that based on the assumption. Then the likelihood
function is upper bounded as

when for all where is an arbi-
trary matrix norm that is consistent with the vector two-norm.

Proof: To prove Lemma 1, we derive an upper bound of
the maximum of with the relaxed constraint
instead of . Note that the norm constraint

still holds.With the definitions of and , we have

(6)
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(7)

(8)

where (6) is based on the fact that

and (7) is because for . Note that the in-
equality constraint on in (7) is changed to the equality
constraint in (8).
The objective function in (8) is trivially bounded by one;

however, there is a certain maximum point in our problem be-
cause of the norm constraint of . Let

and . Instead of
finding the solution for (8) directly, we first find a local extrema
of

(9)

by looking at the point at which the tangential derivatives to the
circle are equal to zero.5 The tangential
derivatives of (9) are given by

for and . Setting the tangential
derivatives equal to zero, we obtain the equations

or equivalently,

(10)

for and because for all .
Clearly, this system of equations is satisfied when
for all . Under the constraint

, one possible solution point is given as

(11)

5Because our searching space is restricted to the circle ,
the point where the tangential derivatives equal to zero is a local extrema of the
objective function.

for all . Note that the point in (11) is the only solution for (10)
because

is a product of three functions that are strictly monotonically de-
creasing with , and thus is also strictly mono-
tonically decreasing with .
Because , the point

for K is the only extreme point of the objective
function in (8). We can show that the extreme point is indeed
the maximum point of (8) by using the lemma in Appendix A.
Lemma 1 states that when ,

it maximizes the likelihood function with the norm constraint
. From the fact that

the vector , which is given as

would be a reasonable estimate for the transmitted vector.
To implement this receiver in terms of the quantized received

signals, let be

where is defined in (2). It is easy to show by using the
relation between and (or between their rows given
in (3)) that

because the -th row of is the same as that of with the
sign adjustment by the sign of the -th element of . Based on
these observations, we propose a ZF-type receiver at the fusion
center, i.e., the fusion center generates as

(12)

With and which are defined in Section II, the same receiver
with (12) can be implemented in the complex domain as

(13)

where .
Note that the squared norm of may not be anymore;

however, the normalization term does not have any impact on
PSK symbol decisions. If is from a QAM constellation, the
normalization term is important because the amplitude of each
entry of does matter in the decoding process. Because the
fusion center does not have any knowledge of the squared norm
of , the best way to normalize is
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assuming the elements of are uniformly distributed from .
Finally, the fusion center needs to detect

by selecting the closest con-
stellation point from
as

(14)

for . The complexity of the ZF-type receiver is
much lower than that of the ML receiver because each of these
minimizations is over a set of elements.

C. Receiver Performance

In this subsection, we analyze the performance of ML and
ZF-type estimators where the entries of the estimates can be ar-
bitrary complex numbers. We assume in this sub-
section. The following lemma shows the behavior of the ML
estimator in the asymptotic regime of for arbitrary .
Lemma 2: Let be the outcome of the ML estimator

For arbitrary converges to the true transmitted
vector in probability, i.e.,

as .
Proof: We consider the real domain in the proof to simplify

notation. The lemma can be proved by showing the inequality

in probability for any with the constraint
when for arbitrary . We take

logarithm of the likelihood function and have

Because the ’s are independent for all

by the weak law of large numbers, and we have

as where the expectation is taken over the channel.

Then, we need to show that

where the expectations are taken over the channel. Because
is a strictly monotonically increasing concave

function, the above inequality is true if first-order
stochastically dominates [34]. In Appendix B, we
show

(15)

conditioned on the received signal where denotes strict
first-order stochastic dominance.
We define the MSE between and as

where the expectation is taken over the realizations of channel
and noise. The following corollary shows theMSE performance
of the ML estimator in the asymptotic regime of for arbitrary

.
Corollary 1: The MSE of the ML estimator converges to

zero, i.e.,

for arbitrary .
Proof: Note that the norm of is bounded, i.e.,

The convergence in probability of a random variable with a
bounded norm implies the convergence in mean-square sense
[35]. Thus, we have

which finishes the proof.
This analytical derivation for the ML estimator shows that

the proposed ML receiver can perfectly decode the transmitted
vector in the limit as grows large with fixed . Moreover,
numerical studies in Section IV show that increasing would be
sufficient for the ML receiver to decode the transmitted vector
correctly with fixed, but sufficiently large, .
We now analyze the MSE of the ZF-type estimator. Although

it is difficult to derive the MSE of the ZF-type estimator in gen-
eral, we are able to have a closed-form expression for
by approximating quantization loss as additional Gaussian noise
where the approximation is frequently adopted in many frame
expansion works, e.g., [31], [32], [36].
Lemma 3: If we approximate the quantization error using an

additional Gaussian noise as

(16)
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with6 and assume , the
MSE of the ZF-type estimator is given as7

where is defined in (13).
Proof: Because and are independent, (16) can be

rewritten as

with . Applying Proposition 1 in
[31] with appropriate normalization, can be bounded as

(17)

where and are fixed constants that satisfy

The matrix inequality means that the matrix
is a positive semidefinite matrix. Due to the as-

sumption on the channel matrix, we have

and the lower and upper bounds in (17) both become ,
which finishes the proof.
Remark 3: Note that the assumption in

Lemma 3 can be satisfied in the limit as the number of receive
nodes grows large because

as under our i.i.d. channel assumption [37].
Remark 4: It is well known that the Gaussian approximation

is the worst case additive noise and gives a lower bound on
the mutual information [38]. Due to the inversely proportional
(although implicit) relation between the mutual information and
the MSE, we expect that the derivation in Lemma 3 would give
an upper bound on the MSE of the ZF-type estimator. This is
verified in Section IV with numerically obtained .
We also have the following corollary when becomes large.
Corollary 2: With the same assumptions used in Lemma 3,

the MSE of the ZF-type estimator is given as

when goes to infinity.
Proof: The proof of Corollary 2 is a direct consequence of

taking the limit on the result of Lemma 3.
Lemma 3 and Corollary 2 show that we can make ar-

bitrarily small by increasing regardless of the effect of noise
or quantization error. However, due to the quantization process
at each receive node, we have , and never goes
to zero with fixed even when , which gives an error
rate floor in the high SNR regime. These MSE analyses are

6The constant in the variance of is to reflect the effect of SNR in the
quantization error.

7 is normalized to have the same norm as .

based on the ZF-type estimator and the approximation of the
quantization process in (16); however, the numerical results in
Section IV show that the analyses also hold for the SER case
with actual quantization process using the proposed ZF-type re-
ceiver.

D. Modified Zero-Forcing-Type Receiver
As mentioned in the previous subsection, the ZF-type re-

ceiver suffers from an error rate floor when goes to infinity
with fixed . Although the error rate floor is indeed inevitable
with the ZF-type receiver, we can improve the SER of the
ZF-type receiver in the high SNR regime by performing
post-processing for given in (14).
When , the effect of noise disappears, and we have

by the sign adjustment, where is defined in (5), is the
transmitted vector in the real domain, and represents element-
wise inequality. This fact also recalls the positive constraint on

in (7) used to upper bound the maximum of . Even
in the high SNR regime, however, the that is estimated from
the ZF-type receiver may not satisfy the inequality constraints,
which would cause an error rate floor. Thus, we formulate a
linear program as

to force the estimate to satisfy the inequality constraints. The
estimate should be mapped to as in (14) before decoding.
It was shown in [31] that in the context of frame expansion

without any noise, the reconstructionmethod by linear program-
ming can give a MSE proportional to , which is much better
than the ZF-type receiver which results in a MSE proportional
to . However, if is not large enough, this post-processing
by linear programming can cause performance degradation be-
cause the sign refinement may not be perfect, resulting in incor-
rect inequality constraints for the linear programming. More-
over, in this case, having more receive nodes may cause more
errors due to the higher chance of having wrong inequality con-
straints. Note that more receive nodes corresponds to more rows
in that force more inequality constraints. We numerically
evaluate the modified ZF-type receiver in Section IV.

E. Achievable Rate Analysis
We can obtain the achievable rate of quantized distributed

reception by evaluating the mutual information between the
transmitted vector and the quantized received signal given
channel realization . If we assume is uniformly distributed,
i.e., , then the mutual information can be written
as8

8Although the mutual information also depends on and , we omit them
for brevity.
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Fig. 2. The MSE of the ZF-type estimator and its approximation in Lemma 3 with increasing either of or . We set (8PSK) and for both
figures. (a) . (b) .

where is the set of all possible outcomes of the quan-
tized received signal. Then, the average achievable rate is given
as

(18)

where the expectation is taken over .
In general, it is difficult to obtain analytically or nu-

merically [39]. However, we are able to calculate using
the quantization structure in our problem. With the real domain
notation in Section III.A, we have

Moreover, the probability of can be derived as

Similarly, we have

Using these probabilities, we can calculate numerically
for given and .

IV. NUMERICAL RESULTS
In this section, we evaluate the proposed techniques with

Monte Carlo simulations. We first evaluate the MSE of the
ZF-type estimator and its analytical approximation derived
in Lemma 3 where in Lemma 3 is obtained numerically
by averaging the empirical variance of the distribution9

9 is the actual quantized received signal, not the approximation in (16).

with different values of SNRs. The ML estimator is not
considered in this simulation because it is computationally
impractical to search over the (norm-constrained) -dimen-
sional complex space for the ML estimator. In Fig. 2(a), we
increase with fixed (i.e., an SNR of10 10 dB) while
we increase with fixed in Fig. 2(b). We set
and (8PSK) in both figures. It is clear that the MSE of
the ZF-type estimator is certainly bounded with fixed as
becomes larger. However, if becomes larger, the MSE of the
ZF-type estimator decreases without bound. As mentioned in
Remark 4, the additive Gaussian noise approximation for the
quantization error gives an upper bound for the MSE of the
ZF-type estimator.
To see the diversity gain of each receiver, we consider the

average SER which is defined as

where the expectation is taken over , and . We compare
the SERs of ML and ZF-type (without the modification by the
linear programming) receivers regarding the transmit SNR in
dB scale with different values of and in Fig. 3. Note that
both figures are for the case of 12 bits transmission per channel
use because the total number of bits transmitted per channel use
is given as

It is clear from the figures that as or increase, the SER
of the ML receiver becomes smaller without any bound while
that of the ZF-type receiver is certainly bounded in the high
SNR regime. However, the SER of the ZF-type receiver can
be improved by increasing , which is the same as the MSE
results. The results show that the ZF-type receiver would be

10Recall that is related to total transmit power, not per antenna transmit
power, in our system setup.
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Fig. 3. SER vs. SNR in dB scale with different values of and for the constellation . Both figures are the case of 12 bits transmission per channel use. (a)
(QPSK) and . (b) (8PSK) and .

Fig. 4. SER vs. SNR in dB scale using the ZF-type receiver with
(16QAM) for the constellation and .

a good option for quantized distributed reception with a large
number of receive nodes in the IoT environment.
Comparing these figures, if the number of transmit antennas
at the transmitter is large, it is desirable to simultaneously

transmit more symbols chosen from a smaller sized constella-
tion to get better SER results when the number of transmitted
bits per channel use, , is fixed for both the ML and ZF-type
receivers. This result is suitable to massive MIMO systems
where the transmitter is equipped with a large number of
antennas.
We also plot the SERs of the ZF-type receiver11 with a

16QAM constellation for and in Fig. 4. The figure
shows that the proposed receiver also works for a non-PSK
constellation even with not-so-large . Thus, the norm con-
straint is not critical for the ZF-type receiver.

11We do not consider the ML receiver due to its excessive complexity.

Fig. 5. Required SNR vs. for the ZF-type receiver to achieve the target SER
of 0.01 with and (8PSK) for the constellation .

To numerically evaluate the array gain, we plot the required
SNR (in dB) for the ZF-type receiver to achieve the target SER
of 0.01 against in Fig. 5. As the number of receive nodes
increases, the required SNR to achieve the target SER decreases.
Therefore, if we can exploit a large number of receive nodes, the
transmitter may be able to rely on cost efficient power amplifiers
with small transmit power.
In Fig. 6, we plot the SERs of the ZF-type receiver and a

ZF-type receiver modified to use linear programming explained
in Section III.D. We only consider the high SNR regime be-
cause the modified ZF-type receiver is aimed to increase the
performance of the ZF-type receiver when the SNR is high.
The figure clearly shows that the modified ZF-type receiver per-
forms much better than the ZF-type receiver when the effect of
noise becomes negligible; however, it performs worse than the
ZF-type receiver when the SNR is not sufficiently high. More-
over, havingmore receive nodes deteriorates the performance of
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Fig. 6. SER vs. SNR in dB scale for the ZF-type and modified ZF-type re-
ceivers with and (8PSK) for the constellation .

Fig. 7. Average achievable rates of quantized distributed reception vs. SNR
with and different values of and .

the modified ZF-type receiver in this case, which is explained
in Section III.D.
In Fig. 7, we plot the average achievable rate defined in (18)

to evaluate the benefit of spatial multiplexing in distributed re-
ception. Due to the computational complexity, we only consider

with and 5 receive nodes.12 Moreover, we limit
theminimum value of to 0.0001 to avoid
numerical errors on . The figure shows that the achievable
rates of quantized distributed reception for both (BPSK)
and 4 (QPSK) cases become close to its maximum value as
increases even with small numbers of . It is expected that we
can achieve the maximum achievable rate with a not-so-large
number of receive nodes, e.g., , with moderate SNR
values.

12Because the size of is , it quickly becomes computationally im-
practical as increases.

V. CONCLUSION
In this paper, we studied a quantized distributed reception

scenario where the transmitter is equipped with multiple
transmit antennas and broadcasts multiple independent data
symbols by spatial multiplexing to a set of geographically
separated receive nodes through fading channels. Each receive
node then processes its received signal and forwards it to the
fusion center, and the fusion center tries to decode the trans-
mitted data symbols by exploiting the forwarded information
and global channel knowledge. We implemented an optimal
ML receiver and a low-complexity ZF-type receiver for this
scenario. The SER of the ML receiver can be made arbitrarily
small by increasing SNR and the number of receive nodes. The
ZF-type receiver suffers from an error rate floor as the SNR
increases. This floor can be lowered by increasing the number
of receive nodes.
The scenario studied in this paper, i.e., high data rate trans-

mission by spatial multiplexing in quantized distributed recep-
tion, may become popular in the near future with the emergence
of the Internet of Things (IoT) where we can easily have a nu-
merous number of receive nodes. To make the scenario more
practical, the fusion center may decode the transmitted symbols
without global channel knowledge, which is an interesting fu-
ture research topic.

APPENDIX A
Lemma: For arbitrary and that satisfy , we have

Proof: With , we have the inequality

Then, we have

which is equivalent to

where is because

which finishes the proof.

APPENDIX B
PROOF OF FIRST-ORDER STOCHASTIC DOMINANCE

We drop unnecessary subscripts to simplify notation. Recall
that
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where . Using the fact that is rotationally in-
variant, we assume the transmitted vector is given as13

. Then, we have

Because and , the distribution of
conditioned on is where

Let . Then, we can write where
. Moreover, we have

conditioned on where the third equality comes from the in-
dependence of and . Note that denotes stochastic equiva-
lence.
Now we want to compute the distribution of for a

fixed given . Note that

where . Then, we have

where the second equality is due to the independence of and
and the third equality comes from the variable substitution

. Note that . If , then becomes ,
which violates our assumption.
We now break up into two independent

zero-mean Gaussian random variables and where

Finally, for a given , we have

(19)

(20)

(21)

13In this proof, we do not have to restrict the elements of from an -ary
constellation because we consider the ML estimator not receiver.

To show the strict stochastic dominance in (19), recall that
is a fixed number given , and is a Gaussian random vari-
able. Thus, the complementary cumulative distribution function
of should be strictly greater than that of .
The stochastic equivalence in (20) is because and are inde-
pendent and (21) is due to the facts that

and . Thus, (15) holds, and we have the claim.
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