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ABSTRACT 
This paper shows that performing voice activity detection (VAD) 
on the output of a spectral subtraction noised reduced signal 
increases the accuracy of the VAD and reduces the VAD 
sensitivity to fixed thresholds. An initial VAD decision is used to 
control the noise estimate update in the spectral subtraction 
algorithm.  The more accurate VAD after the first spectral 
subtraction is then used to reprocess the original noisy speech 
again via spectral subtraction to reduce the noise while not 
attenuating the speech.  Auditory masking thresholds were used to 
weight the spectral subtraction to avoid the introduction of 
musical noise artifacts. 
 
Energy thresholds were used to detect voiced frames of speech 
recorded inside a car at an 8kHz sampling rate and combined with 
four different noise conditions.  The received noise and the speech 
were combined to produce inputs to the algorithm at 0, 5, and 10 
dB SNR where it was shown that the VAD accuracy consistently 
increased after spectral subtraction.  However, if the VAD and 
spectral subtraction were iterated more then twice on the signal, 
then the VAD accuracy started to decrease.  Visual inspection of 
the clean speech was used to determine which frames should be 
classified as voice and used to determine the accuracy of the VAD 
algorithm.  The VAD accuracy was only increased by a few 
percent in each case, but this small improvement makes a big 
difference when using the resulting decisions to control the noise 
estimate of the spectral subtraction algorithm in order to avoid 
attenuating the speech.  Modifications of the fixed offset for 
detecting voice had less of an effect when the VAD operated on 
the signal after spectral subtraction and compared to VAD 
processing on the original signal, which can be attributed to the 
reduced variance in the noise.  Objective speech quality measures 
show that the algorithm removes a large amount of the stationary 
noise in a hands-free environment of an automobile with 
relatively minimal speech distortion. 

 

Categories and Subject Descriptors 
[Speech/Audio]: Noise reduction – voice activity detection, 
spectral subtraction, perceptual weighting, speech enhancement. 

General Terms 
Algorithms, Design, Theory 
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1. INTRODUCTION 
Applications of VAD include speech recognition, voice 
compression, noise estimation/cancellation, and echo 
cancellation. [2] The accuracy of the VAD has a large impact on 
the performance of the algorithms that depend on the VAD 
decisions, thus many approaches have been developed including 
energy level detection, zero crossing rates, periodicity, LPC 
distance, spectral energy distribution, timing, pitch, zero 
crossings, cepstral features, and adaptive noise modeling.  An 
important consideration for the VAD algorithm is the processing 
power required.  This paper shows that an initial VAD decision 
and spectral subtraction can be used to produce a more accurate 
VAD for the purposes of noise reduction.  The VAD and spectral 
subtraction algorithm are presented in sections 2 & 3 respectively, 
the measurements and simulation are described in section 4, and 
finally the iteration scheme to improve the VAD and results are 
covered in section 5. 

2. Voice Activity Detection (VAD) 
The purpose of Voice Activity Detection (VAD) is to determine 
whether a frame of the captured signal represents voiced, 
unvoiced, or silent data.  Voiced sounds are periodic in nature and 
tend to contain more energy than unvoiced sounds, while 
unvoiced sounds are more noise-like and have more energy than 
silence.  Silence has the least amount of energy and is a 
representation of the background noise of the environment.  The 
VAD plays a central role in spectral subtraction algorithms 
because its accuracy dramatically affects the noise suppression 
level and amount of speech distortion that occurs.  The noise 
estimate in spectral subtraction uses the VAD to decide when to 
update the noise reference in the absence of speech.   
 
The energy level detection VAD algorithm used in this paper is 
described below.  The initial noise spectrum, mean, and variance 
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are calculated assuming the first 10 frames are noise only.  
Thresholds are calculated for speech and noise decisions and all 
statistics are gradually updated when a noise frame is detected.  
The update factors α and β can be tuned and have been set to 
0.95 as in work done by Virag [8]. Other research has extended 
the energy calculation VAD to dual and multiple spectral sub-
bands within each frame.   
 
The first step of the algorithm is to buffer the data into the kth 
frame, x(n, k), and transform it into the frequency domain. 

( ) ( )( )knxFFTkwX ,, =    (2.1) 

 
Next, the noise spectrum and noise mean for k =1 are initialized. 
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If VAD = 0, then the noise spectrum, mean, and standard 
deviation for frame are all updated.  Frames 2 through 10 are 
assumed to be noise in order to get a good initial average of the 
stationary noise in the environment. 

),()1()()( kwXwNwN αα −+=   (2.4) 

( ) ∑
−

=

=
1

0
)(1 L

w
N wN

L
kµ    (2.5) 

)()1( kNNN µββµµ −+=    (2.6) 

( ) 2/12
)(

2 )1( kNNN µββσσ −+=    (2.7) 

 
The mean of the noise estimate is Nµ , the standard deviation of 
the noise estimate is Nσ , and the noise estimate variance is 

represented by N
2σ .  

 
Thresholds are updated if a frame does not contain speech, using 
the mean and variance of the noise estimate, where threshold 
settings are adjusted using the multipliers Sα  and Nα , which can 
be adapted and set experimentally.  Optimally adapting these 
VAD thresholds has been the subject of recent research, but was 
not attempted in this paper because sensitivity to the thresholds 
was reduced by the iteration of the algorithm as mentioned in 
section 5.1. 

NSNSThresh σαµ +=    (2.8) 

NNNNThresh σαµ +=    (2.9) 

VAD decisions can be made using a speech threshold 
determination, where if the signal energy exceeds twice the 
standard deviation above the mean of the noise, then the frame is 
classified as speech.  If the signal energy falls within some 
fraction of the noise standard deviation, then it is classified as 
noise and modifies the reference accordingly.  If neither speech 

nor noise is chosen, then the last frame’s decision is repeated for 
the current frame. 
 

if(Energy(k) > ThreshS), VAD(k) = 1 
if(Energy(k) < ThreshN), VAD(k) = 0 
else VAD(k) = VAD(k-1) 

 

3. Spectral Subtraction (SS) 
This section describes the spectral subtraction algorithm used and 
the steps required to calculate the perceptual mask threshold. 
 

3.1 SS Algorithm 
Spectral subtraction uses the short-term spectral magnitude of the 
noisy speech and an estimate or reference of the noise signal. [1]  
Most single channel spectral subtraction methods use a voice 
activity detector (VAD) to determine when there is silence in 
order to get an accurate noise estimate and the noise is assumed to 
be short-term stationary so that noise from silent frames can be 
used to remove noise from speech frames.  In order to estimate 
the clean speech frame a phase estimate is also required, but 
Wang and Lim [9]have determined that it is sufficient to use the 
noisy phase spectrum as an estimate of the clean speech phase 
spectrum Figure 3-1 shows the signal flow for spectral subtraction 
where ( )km  is a frame of unprocessed noisy data, k  is the frame 
index, ω  is the frequency index, ( )kM ,ω  is the spectrum of the 
frame, ( )kN ,ω  is the spectrum of the noise estimate, ( )kT ,ω  is 
the perceptual mask threshold, ( )a  and ( )b  are the weighting 
functions, ( )kS ,ˆ ω  is the spectrum of the speech estimate, and 

( )kŝ  is the speech estimate frame in the time domain.   
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2

a()

+

-

b()
Select

greater of
two inputs

( )kwR ,

+

( )kT ,ω

( )kM ,ω

2( )kN ,ω

2/1

 

Figure 3-1: Spectral Subtraction with perceptual weighting 
 

After subtraction, the spectral magnitude is not guaranteed to be 
positive and some possibilities to remove the negative 
components are by half-wave rectification (setting the negative 
portions to zero), full wave rectification (absolute value), or 
weighted difference coefficients.  Half-wave rectification is 
commonly used but introduces “musical” tone artifacts in the 



processed signal.  Full wave rectification avoids the creation of 
musical tones, but is less effective at reducing noise.  Much of the 
spectral subtraction research has focused on how to remove or 
reduce the creation of musical tones while maximizing the 
suppression of noise. [3] The SS algorithm prevents the negative 
spectral components from accruing by weighting the spectral gain 
function according the masking threshold and a lower limit of 
zero. 

3.2 Perceptual mask threshold 
The algorithm in this paper uses perceptual nonlinear weighting 
of the gain function with spectral subtraction, which enables it to 
aggressively attenuate the noise while avoiding the introduction 
of annoying artifacts to the speech signal.  SNR, signal to noise 
ratio, is the most broadly used criteria for reducing noise in a 
received speech signal and has been very successful, but it is 
limited because inaccuracy of the noise estimate can cause either 
excess residual noise or distortion of the signal.  Taking 
advantage of the human auditory system’s characteristics can help 
mitigate the effects of residual noise and render the speech to be 
more perceptually pleasing to the ear because the distortion of the 
signal is minimized by not processing noise that is effectively 
inaudible. The short-time spectral amplitude, STSA, enhancement 
methods can take advantage of how people perceive the 
frequencies instead of just working with SNR.   
 
Perceptual speech enhancement techniques have the challenge 
that there is no clean speech reference or accurate spectral noise 
estimate in order to determine exact auditory masking thresholds.  
If the clean-speech masking threshold is too high then more noise 
will be left in the signal, but if the clean-speech masking 
threshold is calculated too low, then information about the desired 
signal will be lost.  Spectral subtraction is used to obtain an 
estimate of the clean speech from which the masking thresholds 
are calculated.  The steps required to calculate the masking 
threshold are taken directly from the paper by Johnson [6] and are 
listed below and shown in Figure 3-2. 
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Figure 3-2: Masking Threshold Calculation 

 
1. Obtain initial estimate of the speech 
2. Apply the spreading function to the critical band spectrum 

3. Calculate the spread spectrum masking threshold accounting 
for spectral flatness 

4. Convert the spread spectrum back to the Bark domain via 
renormalization 

5. Adjust for absolute thresholds 
6. Relate the spread masking threshold to the critical band 

masking threshold 
 
Critical Band Analysis partitions the power spectrum into critical 
bands according to the Bark scale as in Zwicker & Fastl [10]. The 
power spectrum is calculated from the frequency data as in 
equation 3.1. 

)(Im)(Re)( 22 ωωω +=P    (3.1) 

The energy in each critical band is summed in equation 3.2, where 
Bi  is the energy for critical band i , bli  is the lower frequency 
for the band, and bhi  is the upper frequency for the band. 
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The number of critical bands used will depend on the bandwidth 
of the signal in question.  Humans can only perceive frequencies 
between 20 Hz and 20kHz, so that places a bound on the range of 
frequencies to consider.  There are 22 critical bands for an 8kHz 
signal that is sampled at the Nyquist rate of 16kHz.   
 
The spreading function is used to estimate the effects of masking 
across critical bands.  The spreading function is calculated as 
( ) 25<=− ij , where i  is the Bark frequency of the masked signal 

and j  is the Bark frequency of the masking signal.  The term 
Bark is used to indicate the frequencies of one critical band.  The 
spreading function is put into matrix form, 

ijS , and convolved 

with critical band energies iB . The spread critical band spectrum, 

iC , is given in equation 3.3, where ∗  is the convolution operator. 

iiji BSC ∗=     (3.3) 

There are different masking thresholds based on spectral flatness 
of the signals. 

1. Tone masking noise is estimated as (14.5 + i) dB below 

iC , where i  is the Bark frequency. 

2. Noise masking a tone is estimated as 5.5 dB below iC  
uniformly across the critical band. 

Spectral Flatness Measure, SFM, is defined in equation 3.6 as the 
ratio of the geometric mean, Gm, of the power spectrum to the 
arithmetic mean, Am, of the power spectrum.  Arithmetic mean is 
given in equation 3.4 and geometric mean is given in equation 
3.5. 

n
PPPP

A n
m

)(...)()()( 321 ωωωω ++++
=  (3.4) 

n
nm PPPPG )(...)()()( 321 ωωωω ⋅⋅⋅⋅=   (3.5) 



m

m
dB A

G
SFM 10log10∗=     (3.6) 

The coefficient of tonality in equation 3.7, α , is calculated 
where an SFM = SFMdbmax = -60 dB indicates the signal is very 
tone-like and an SFM = 0 indicates the signal is more noise-like.  
For example an SFM = -30dB would result in 5.0=α . 
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The offset in equation 3.8, iO , for the masking energy in each 
band, is determined by using the tonality to weight the masking 
thresholds for tones and noise. 

( ) ( ) 5.515.14 ∗−++∗= αα idBOi    (3.8) 

The spread threshold estimate is calculated using equation 3.9. 
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The spreading convolution must now be undone and the threshold 
converted back to the Bark domain.  De-convolution is unstable 
due to the shape of the spreading function and would introduce 
undesired artifacts into the signal, so renormalization is used 
instead to remove the increased energy added to each band by the 
spreading function.  Renormalization multiplies each Ti by the 
inverse of the energy gain, assuming a uniform energy of 1 in 
each band. 
 
Critical band noise thresholds that are lower than the absolute 
threshold of hearing are changed to equal the mean of the absolute 
threshold of hearing for that band because it does not make sense 
to calculate a mask threshold for something that cannot be heard 
anyway.  The absolute threshold of hearing has been measured 
with several experiments and is given as an estimated curve 
plotted versus frequency reported by Fletcher [5]. 

4. Experiments 
Real data measurements and MATLAB© simulations were used to 
evaluate the algorithms, which are described below.  Objective 
quality measures, used in the analysis, are described in section 
4.3. 
 

4.1 Measurements 
Measurements were made in a 2001 Honda Odyssey minivan 
using a Larson-Davis BNK omni-directional microphone mounted 
between the visor and ceiling slightly above and in front of the 
driver, which was 38cm from the driver’s mouth.   The sampling 
rate was 16kHz with 16 bits of resolution.  Adult male and female 
voices were recorded while the van was parked and off, with the 
windows up and down, in order get clean speech in a similar 
environment to where the noise would be measured.  The clean 
speech also served as a reference for calculating speech quality 
metrics.  The noise measurements in the van were made 
separately without the driver speaking and mixed with the speech 
later, so the SNR could be set to known values.   
 

The frequencies below 1 kHz contain most the energy for the 
signals involved and most of the speech energy is in the lower 
frequencies with peaks around the pitch of the desired talker just 
below 200 Hz.  About 90% of the road noise is contained below 
120 Hz.  The fan noise has significantly more energy around 200 
Hz, which caused more problems than the road noise when mixed 
with the speech.  The interfering talker noise has strong 
harmonics at 300 and 600 Hz, which corresponds well to the 
expected pitch of the children talking. 
 

4.2 Simulations 
The simulations were done in MATLAB© using the data recorded 
in the van down-sampled to 8kHz,  where the various 
combinations of noise and speech were mixed at 0, 5, and 10 dB 
SNR.  The voice activity detector (VAD) and frames-size was 
kept constant through all the simulation runs because they have 
such a large impact on the results.  Using the same VAD enables 
fair comparison between regular spectral subtraction and the 
enhanced algorithm.  MATLAB© M-files were also used to 
calculate the objective speech quality measures and create the 
plots to visualize the comparison of results. 
 

4.3 Speech Quality Metrics 
The person who listens to the speech is ultimately the one who 
decides its quality, thus subjective listening tests are the best way 
to judge the performance of an algorithm.  Commonly used 
subjective tests are the Mean Opinion Score (MOS), Diagnostic 
Acceptability Measure (DAM), and Diagnostic Rhyme Test 
(DRT).  The challenge with subjective measures is that a large 
number of people tested under consistent conditions are required 
to get valid results.  Objective measures overcome this burden by 
allowing a computer to analyze the speech quality.  The objective 
measures used in this paper were chosen for their good correlation 
to subjective tests and their use in related research. 
 

Table 4.1: Objective Speech Quality Measure 
            Correlation to Subjective Tests 

Objective Speech Quality 
Measure 

Correlation to Subjective 
Tests 

Signal-to-Noise Ratio (SNR) 24% 

Segmental SNR (SSNR) 77% 

Articulation Index 67% 

Itakura-Saito Distance 59% 

 
The correlation measures in Table 4.1 were calculated against a 
database of subjective speech quality test data accumulated by 
Quackenbush [7], where the subjective quality test used was the 
Diagnostic Acceptability Measure (DAM).  All the objective 
quality measures cited in Table 4.1 require the original speech for 
their calculations.  The speech and the noise used in this paper 
were recorded separately in the same environment in order to 
have the required clean speech reference when computing 
objective quality measures. 



5. Results 
The results subjective listening tests agreed with the objective 
speech quality measures reported in section 5.1. Improved VAD 
accuracy is demonstrated and explained in section 5.2. 
 

5.1 Iteration of Spectral Subtraction 
Voice activity detection is generally more accurate for higher 
SNR, thus VAD accuracy should improve when using a noise 
reduced signal versus the original noisy speech.  Experiments 
iterating the SS algorithm were motivated by the desire to 
calculate the VAD on a noised reduced signal. [4]  Voice activity 
detection was improved by iterating the algorithm twice, as 
shown in Figure 5-1, and also made the VAD less sensitive to the 
fixed energy thresholds for detection of speech vs. noise. 
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Figure 5-1: SS Iteration 

 
Table 5.1 shows the speech quality results of iterating the 
algorithm and the corresponding percentage of voice frames 
detected.  The example in Table 5.1 is for road noise at 5 dB 
SNR, but similar results were found for all noise types and SNR 
levels.  It was seen that all the speech quality measures improve 
on the second iteration of the algorithm and the improvement is 
directly related to the performance of the VAD.  The results also 
show that iterating more than two times starts to degrade the 
quality of the speech and provide less noise suppression. 
 

Table 5.1: Speech Quality and SS Iteration 

Signal Road / 
Engin

e 

SS 
iter #1 

SS  
iter #2 

SS  
iter #3 

%VAD - 52 60 62 

SNR  η 5 15.5 16.8 15.4 

SSNRη 1.23 11.17 12.30 11.74 

AI     η 0.49 0.54 0.62 0.61 

IS      ι 0.51 0.58 0.39 0.42 

 
Another interesting effect of iterating the algorithm is that the 
VAD is less sensitive to the fixed energy thresholds used to 
determine if speech or noise is present.  The threshold for speech 
in the simulations was fixed to 0.7 of the variance of the noise 
estimate.  This threshold could be moved up or down by as much 
as 0.3 with little change in % VAD reported in the second 
iterations.  In contrast the first iteration would change the % VAD 
reported directly corresponding to any variation of the threshold. 

 
The behavior of the VAD using the enhanced speech estimate is 
very logical when the algorithm for voice detection is examined.  
The speech threshold is a fixed constant, Sα , multiplied by the 
standard deviation of the noise estimate, Nσ , and added to the 
mean, Nµ , of the noise estimate as shown in equation 5.1.   

NSNSThresh σαµ ∗+=    (5.1) 

Noise variance is significantly smaller when the signal has passed 
through the first iteration of the perceptually weighted non-linear 
spectral subtraction.  The smaller variance causes the overall 
value of the speech detection threshold, 

SThresh , to be lower, 
which naturally detects more speech frames.  Lower noise 
variance also makes the VAD less sensitive to the choice of the 
fixed threshold constant because the value of the standard 
deviation, Nσ , that the fixed constant multiplies is less, so the 

impact of the constant, Sα , on the VAD performance is also less.  
The lower threshold is less likely to classify a speech frame as 
noise, thus avoiding attenuation of the speech.  If this is taken too 
far by iterating the algorithm many times, then not enough frames 
contribute to the noise estimate and the noise is less effectively 
removed the from the signal. 
 

5.2 Improved VAD Accuracy 
A closer analysis of the VAD is warranted because it plays such a 
critical role in the SS algorithm.  Correct VAD decisions for each 
frame are determined by visually inspecting the clean speech 
signal and used as a reference, VADref, for comparison to the VAD 
decisions calculated by the algorithm. 

framestotal
framescorrectAccuracyVAD

_
__ =    (5.2) 

Parameters of the test signal are 8 kHz sampling rate, 128 samples 
per frame, 157 frames for signal length, and the length of the 
speech is 2.5 seconds or 20,000 samples 
Visual inspection of the clean speech signal found 88 speech 
frames and 69 silent frames, which corresponds to 56% voice 
activity.  The comparison to this reference for each noise type, 
SNR level, and SS iteration is reported in Table 5.2. 

 
Table 5.2: % VAD accuracy 

SNR (dB) 0 0 5 5 10 10 

Iteration 1 2 1 2 1 2 

Noise-free 95 

Road 91 91 95 94 96 95 

Fan 81 89 90 94 94 96 

Talker 73 75 76 75 74 74 

AWGN 54 56 82 87 90 95 

 
VAD accuracy, using the fan noise and AWGN, was improved by 
iterating the algorithm a second time.  Road noise VAD accuracy 



stayed about the same for both iterations, but the second iteration 
tended to classify more frames as speech.  Interfering talkers 
produced consistently poor VAD accuracy across all SNR levels 
and iterations because the algorithm does not distinguish between 
desired and undesired talkers. 
 

5.3 Conclusion 
In summary, this paper has shown that using spectral subtraction 
prior to computing the VAD increased the VAD accuracy.  The 
better performance of the VAD was used to reprocess the original 
signal using spectral subtraction, which achieved greater noise 
attenuation with less signal distortion.  Perceptually weighted 
spectral subtraction was used to avoid the introduction of musical 
noise artifacts. 
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