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ABSTRACT

Most prior research in distributed beamforming involves nar-
rowband, frequency nonselective, channels, with the goal of send-
ing a common message from cooperating nodes so that phases of
the signals transmitted from the different nodes align at the receiver.
The performance metric is the received SNR (directly related to the
Shannon capacity for an AWGN channel). This “coherence metric”
is maximized when each transmitter compensates its channel phase
to the receiver, while transmitting at maximum allowable power. In
this paper, we consider the problem of distributed transmit beam-
forming over broadband, frequency selective channels, defining the
coherence metric as the Shannon capacity, to be maximized subject
to a power constraint at each transmitter. OFDM provides a natu-
ral decomposition of such channels into narrowband subchannels,
hence the problem reduces to determining how each transmitter al-
locates its power across subchannels. A key technical result is that
the optimal solution obeys a separation property that significantly
simplifies computation. We show that it differs from classical water-
filling due to the per-transmitter power constraints of the distributed
beamforming setting. We compare it both structurally and numer-
ically, to a centralized beamforming system with power constraint
across transmitters. This is like waterfilling and upper bounds the
performance of our setup.

Index Terms— Broadband, capacity, maximization, water fill-
ing, coherence.

1. INTRODUCTION

In distributed transmit beamforming over a frequency nonselective
channel, cooperating transmitters convey a common message by
forming a virtual array directing a beam at a receiver. This concept
plays a fundamental role in the Shannon theory of relaying [1].
For an AWGN channel, maximizing Shannon capacity and received
SNR are equivalent, and are achieved when each transmitter pre-
codes so as to compensate for its channel phase to the receiver, while
transmitting at its maximum power. Realizing this optimum solution
in practice requires synchronizing transmitters with independent
oscillators, and ensuring that their phases align at the receiver. In
recent years, there has been substantial progress in solving these
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difficult synchronization problems, with theoretical [4, 5] as well as
experimental results [6–8] showing that feedback-based strategies
yield near-optimal performance.

To the best of our knowledge, prior work on distributed transmit
beamforming has been restricted to frequency nonselective chan-
nels, with the exception of [9], which presents preliminary results
on extending feedback-based algorithms to broadband, frequency
selective channels. In this paper, our goal is to establish funda-
mental performance benchmarks for wideband channels which can
serve as a point of comparison for any proposed distributed transmit
beamforming algorithm. In particular, we pick the simplest possible
metric, Shannon capacity, and seek to optimize it subject to per-
transmitter power constraints. Decomposing the broadband channel
into N frequency nonselective subchannels via OFDM, the prob-
lem reduces to determining how each of n users allocates its power
across subchannels so as to maximize capacity.

The problem we consider has an interesting form. The utility
function is a sum over subchannels of logarithms whose arguments
involve (per-subchannel) sums over transmitters, but the constraints
are per transmitter, with each constraint involving a sum over sub-
channels. In this sense the nature of terms appearing in the constraint
and the objective are of different types. This is in sharp relief to the
vast literature on Shannon theory for MIMO systems, with strategies
often reducing to some form of waterfilling. For example, the vec-
tor multiple access channel [10,11], does have per-transmitter power
constraints, but unlike here, its objective functions also involve per-
transmitter as opposed to per-subchannel terms. As an aside, we
also note that in [10,11] transmitters send independent messages. In
our setting they must send a common message.

We compare our solution to a centralized system which provides
an upper bound on capacity by optimizing it subject to a looser con-
straint on the sum of the powers across transmitters. This central-
ized problem can indeed be reduced to classical water filling, since
we may view each subchannel as a MISO channel with a centralized
transmit array. Furthermore, just like [10,11], and unlike distributed
beamforming, this centralized structure also has the property that the
same type of terms appear in both the constraints and the objective
function. While the objective is the same as decentralized objective,
the constraint can be treated as also being a per-transmitter summa-
tion.

Our analysis reveals that the optimal solution obeys an inter-
esting separation property, which is aesthetically appealing, while
simplifying computation: it reduces an nN -variable constrained op-
timization with complex variables, to an N -variable unconstrained
optimization with real variables. A consequence of this separation
property is that, if a given user is silent on a subchannel, then all
users must be silent on that subchannel. In particular, the solution
that we obtain is very different from classical waterfilling. Yet the
separation property does enable our solution to inherit two properties
of the centralized solution, though through very different technical
mechanisms: (a) Both lead to entire subchannels being potentially
silent at the optimal. (b) Both reduce to anN -variable real optimiza-



tion. However, whereas in our case this N -variable optimization is
an unconstrained problem, that in the centralized problem remains
constrained.

For the settings considered in our numerical results, the capacity
for our distributed system with per-transmitter constraints is quite
close to the upper bound provided by the centralized problem. On
the other hand, capacity obtained by spreading each transmitters
power evenly across subchannels is found to perform quite poorly
relative to our optimal distributed system, especially at low SNRs.

Outline: Section 2 provides an OFDM-based problem formu-
lation, and explains how our problem differs from classical water-
filling. It provides without detailed derivation, the optimum for the
centralized benchmark, and foreshadows its key difference with our
decentralized criterion. Section 3 provides the main results, expos-
ing the separation property. Section 4 gives simulations. Section 5
concludes.

2. THE OPTIMIZATION PROBLEMS

In Section 2.1 we formulate an optimization problem that helps
quantify the best achievable distributed beamforming in an OFDM
setting for both decentalized beamforming and a centralized bench-
mark. Section 2.2 explains the technical difference between the
OFDM based criterion for distributed beamforming and those ap-
pearing in classical water filling and provides the condition of
optimality for the centralized benchmark.

2.1. Criteria for broadband beamforming

Consider transmitters indexed over i ∈ {1, · · · , n}, each transmit-
ting over N subchannels indexed by k ∈ {0, · · · , N − 1}. Suppose
the complex baseband channel seen by the i-th transmitter on the
k-th subchannel is ĥik. Suppose the noise variance on this subchan-
nel is σ2

k. Suppose each transmitter transmits the common complex
signal xk over the k-th subchannel, after precoding by the com-
plex gain ĝik. Then the aggregate received signal in the k’th sub-
channel is rk = xk

∑n
i=1 ĝikĥik. The received signal power is

then PR,k = E
(
|xk|2

) ∣∣∣∑n
i=1 ĝikĥik

∣∣∣2. The capacity of the MISO
channel can then be written as:

N−1∑
k=0

ln

1 +
Px,k

∣∣∣∑n
i=1 ĝikĥik

∣∣∣2
σ2
k

 (2.1)

where Px,k
.
= E

(
|xk|2

)
. In distributed beamforming the optimiza-

tion goal is to find ĝik to maximize (2.1) subject to the total trans-
mitted power by each transmitter being equal to unity, i.e. subject
to

N−1∑
k=0

Px,k |ĝik|2 = 1, ∀ i ∈ {1, · · · , n} (2.2)

On the other hand in centralized beamforming transmitters can co-
ordinate to distribute the power among themselves. Consequently
optimum beamforming is to maximize (2.1) subject to

n∑
i=1

N−1∑
k=0

Px,k |ĝik|2 = n. (2.3)

Now redefine gik = ĝik
√
Px,k and hik = ĥik/σk. Note |hik|2

models the SNR seen by the i-th transmitter in the k-th subchannel.

Then the problem for decentralized optimal beamforming reduces to
Problem 2.1 below.

Problem 2.1 Given complex scalars hik, find complex scalars gik
that maximize

N−1∑
k=0

ln

(
1 +

∣∣∣∣∣
n∑

i=1

gikhik

∣∣∣∣∣
2)

(2.4)

subject to:
N−1∑
k=0

|gik|2 = 1, ∀ i ∈ {1, · · · , n} (2.5)

The centralized criterion becomes with the same definitions:

Problem 2.2 Given complex scalars hik, find complex scalars gik
to maximize (2.4) subject to:

n∑
i=1

N−1∑
k=0

|gik|2 = n. (2.6)

Observe the optimum capacity for Problem 2.2 is no smaller than
that for Problem 2.1.

2.2. Technical differences and the solution to Problem 2.2

The key technical difference between Problem 2.1 and papers like
[10] and [11] is as follows. Summations in each logarithm term in
(2.4) is with respect to n, the transmitter index, while the constraints
(2.5) are summations with respect to k, the subchannel index. Com-
parable utility functions considered in [11] involve summations over
the same index as the summations in the constraints. It is this differ-
ence that fundamentally alters the nature of the solution to Problem
1, than those offered by traditional water filling papers. Problem 2
on the other hand does not have this technical difference as the sum-
mation in (2.6) is over both indices.

For the sake of completeness we now provide the solution of
Problem 2.2, omitting details due to its similarity to the traditional
water filling methods. Define the vectors of precoders and SNRs
over the k-th subchannel to be respectively

gk =
[
g1k, · · · , gnk

]T and hk =
[
h1k, · · · , hnk

]T
. (2.7)

Then (2.4) and (2.6) respectively reduce to

N−1∑
k=0

ln

(
1 +

∣∣∣hT
k gk

∣∣∣2) and
N−1∑
k=0

‖gk‖
2 = n.

Thus by the Cauchy-Schwarz inequality, for some real scalar ck, the
optimizing gk obey:

gk = c2kh
∗
k, (2.8)

and Problem 2.2 reduces to: find real scalar ck that maximize

N−1∑
k=0

ln
(
1 + c2k‖hk‖2

)
subject to

N−1∑
k=0

c4k‖hk‖2 = n.

Effectively, thisNn variable complex optimization has been reduced
to an N variable real though constrained optimization. Arrange the



hk to obey ‖hk‖ ≥ ‖hk+1‖. Suppose M is the largest integer for
which

1

M

(
n+

M−1∑
l=0

1

‖hl‖2

)
>

1

‖hM−1‖2
. (2.9)

Then it can be shown that the optimizing gk obey:

gk =

 h∗
k

‖hk‖

√
1
M

(
n+

∑M−1
l=0

1
‖hl‖2

)
− 1
‖hk‖2

0 ≤ k ≤M

0 else
.

(2.10)
This is in the vein of most classical water filling solutions. Larger n
and/or large SNRs means fewer subchannels are silent.

3. THE MAIN RESULT

The summation in each logarithm term in (2.4) is over the channel
index k, while the constraints in (2.5) are summations in the trans-
mitter index i. Thus one cannot conclude that the matched filtering
condition (2.8) results in optimality for Problem 2.1. Instead, as (2.5)
only involves the magnitudes of the gik, maximization requires that
for some real αik

gik = α2
ikh
∗
ik. (3.11)

Then Problem 2.1 becomes:

Problem 3.1 Given complex scalar hik, find scalar αik to maximize

N−1∑
k=0

ln

(
1 +

(
n∑

i=1

α2
ik|hik|2

)2)
(3.12)

subject to:

N−1∑
k=0

α4
ik |hik|2 = 1, ∀ i ∈ {1, · · · , n} (3.13)

To avoid trivialities we make the following assumption.

Assumption 3.1

hik 6= 0, ∀ i ∈ {1, · · · , n}, k ∈ {0, · · · , N − 1} (3.14)

Observe that Problem 2.1 has been reduced to an nN -variable,
real, constrained optimization. The fact that (2.8) is not optimizing
may seem to preclude the possibility of reduction to the N -variable
optimization that Problem 2.2 reduces to. Yet the sequel shows that
not only does Problem 3.1 and hence Problem 2.1 reduce to an N -
variable optimization problem but it does so to an unconstrained one.

There are two key mathematical features of Problem 3.1 that
set the stage for the results here. First, each summand in the utility
function (3.12) is a per subchannel summand, while each constraint
in (3.13) is a per user constraint. Thus, there are as many summands
in the utility function, as there are subchannels, just as there are as
many constraints as there are users.

The second feature is that while the utility function is quadratic
in the αik, the constraints exhibit a quartic dependence. The first
consequence of these features is Theorem 3.1 which asserts that, just
as in Problem 2.2, should a transmitter be silent on a given subchan-
nel, then all transmitters must be silent on this same subchannel.
Due to space constraints we provide only a proof outline.

Theorem 3.1 Consider Problem 3.1, with Assumption 3.1 in force.
Suppose for some i ∈ {1, · · · , n} and k ∈ {0, · · · , N − 1}, the

optimizing αik = 0. Then for this k and all l ∈ {1, · · · , n}, the
optimizing αlk = 0.

Proof: Suppose α10 = 0, but α20 6= 0. As each transmitter must
transmit on at least one subchannel assume without loss of generality
that α11 6= 0. The resulting utility function is for some K ≥ 1,
ρ1 > 0 and ρ2 ≥ 0

J0 = ln
(
1 + ρ21

)
+ ln

(
1 +

(
ρ2 + h2

11α
2
11

)2)
+ lnK. (3.15)

Now consider the value of the utility function obtained by choosing
α10 = ε, keeping all other αik unchanged excepting α11, which is
adjusted to satisfy (3.13) for i = 1. Under this new allocation the
derivative of the resulting utility function, J1(ε) with respect to ε,
takes the form of

J ′1(ε) = εf(ε)− ε3g(ε)

where both f(ε) and g(ε) approach positive constants as ε tends to
zero. Thus for some ε∗ and for all 0 < ε < ε∗ this derivative is
positive, i.e. increasing α10 to a sufficiently small positive value
increases J1(ε).

We now provide the separation property and only a proof out-
line.

Theorem 3.2 Consider Problem 3.1, with Assumption 3.1 in force.
Then there exist scalars ai, i ∈ {1, · · · , n} and bk, k ∈ {0, · · · , N−
1}, such that at the optimum:

α2
ik = a2i b

2
k. (3.16)

Further at least one bk 6= 0. The scalars ai obey

a2i =
1√∑N−1

k=0 b
4
k |hik|2

. (3.17)

Finally the bk maximize

N−1∑
k=0

ln

1 + b4k

 n∑
i=1

|hik|2√∑N−1
l=0 b4l |hil|2

2 . (3.18)

Proof: Consider the pertinent Lagrangian

N−1∑
k=0

ln

(
1 +

(
n∑

i=1

α2
ik|hik|2

)2)
−

n∑
i=1

λi

(
N−1∑
k=0

α4
ik |hik|2 − 1

)
(3.19)

Under Assumption 3.1, if αpq 6= 0, KTT conditions yield

α2
pq =

1

λp

∑n
i=1 α

2
iq|hiq|2

1 +
(∑n

i=1 α
2
iq|hiq|2

)2 .
Thus α2

pq is the product of a term indexed just by p and a term in-
dexed just by q. Thus indeed (3.16) holds when αpq 6= 0. In view of
Theorem 3.1 it also holds with bq = 0 when αpq = 0. Substituing
into (3.13) yields (3.17). Substituting into (3.12) yields the utility
function in (3.18).

Theorem 3.1 is a special case of Theorem 3.2, though it is
needed to prove Theorem 3.2. The scaling of a vector of bk doesn’t
change the utility function in (3.18).

Further (3.16) is the separation property, and the solution of
Problem 2.1, under (3.11) is accomplished by the N -variable, real,



unconstrained optimization of (3.18). The solution is in fact modu-
lar: Find bk to maximize the function in (3.18). Find ai using (3.17).
Then with αik as in (3.16), (3.11) provides the optimizing gik.

4. SIMULATIONS
Simulations are for two scenarios corresponding to low and high
SNR. Three power allocation constraints are considered: (a) con-
straint on average total power summed across transmitters (‘Total
Power Constraint’), (b) separate constraint on the average power of
each transmitter (‘Per Transmitter Constraint’) and (c) equal power
allocation for each channel on each transmitter (‘Equal Power’). For
the “low SNR” case we consider N = 4 subchannels with the chan-
nel gains for each user on each channel chosen iid ∼ CN(0, σ2

l ),
where σ2

l = −20,−13,−10 and −7 dB for the first, second, third
and fourth channel respectively. Receiver noise level is 0 dB.
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Fig. 1: Capacity for low SNR as a function of number of users with
four subchannels.

Figure 1 depicts capacity as a function of n, the number of users,
and shows that while the performance loss from the centralized to
the decentralized case is modest, the disparity of both from the equal
allocation case is very substantial and grows with n. It also depicts
the monotonic increase of capacity with n. This is expected as the
average received SNR scales as n2.

For small n, and low SNRs (2.10) suggests that in the centralized
case users should be silent on weaker channels. This is confirmed by
Fig. 2b which shows that with four users all power is allocated by
each to the strongest channel. Figure 2 shows that this is true even in
the decentralized case, confirming a consequence of the separation
property that should a user be silent on a particular subchannel then
all users are silent on this subchannel.

Figure 3 considers the high SNR case with four subchannels,
chosen for each user as iid ∼ CN(0, σ2

h), with σ2
h = 40, 47, 50 and
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(a) Total Power Constraint.
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(b) Per Transmitter Constraint.

Fig. 2: Power allocated to channels by each user at low SNR.
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Fig. 3: Capacity for high SNR as a function of number of users with
four subchannels.
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Fig. 4: Power allocated to channels on each user at high SNR.

53 dB for the first, second, third and fourth channel respectively. We
see from Fig. 3 that the capacity increases with increasing n in a
concave (logarithmic) manner, as we expect. The decentralized per-
formance is virtually indistinct from the centralized case. Disparity
with the equal allocation case still persists but is less pronounced.
As shown in figures 4a and 4b, at this high SNR case no channel is
silent. This is evident from (2.10) for the centralized case. Evidently
the trends seen for the centralized case also manifest the decentral-
ized case.

5. CONCLUSION

Motivated by the goal of obtaining theoretical benchmarks for dis-
tributed beamforming over frequency selective channels we have
characterized conditions under which capacity is maximized in
an OFDM framework subject to the constraint that all transmit-
ters transmit with equal power. The key analytical take away is
that the optimal precoders obey an attractive separation property
that converts this nN variable, complex constrained maximization
problem to a N -variable real, unconstrained optimization problem.
We compare performance with a hypothetical centralized problem
where capacity is maximized subject to a constraint on the total
power transmitted across all users. The decentralized problem’s
performance tracks and is close to the upper bound provided by the
centralized problem. At low SNRs both significantly outperform the
case where each user allocates equal power on each subchannel. The
performance disparity at high SNRs is smaller but still discernible.
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