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Abstract— We propose a finite impulse response (FIR) mini-
mum mean squared error (MMSE) decision feedback equalizer
(DFE) for orthogonal multipulse modulated signals received
through a multipath channel. Our system model accounts for
both the loss of orthogonality caused by the multipath channel
as well as intersymbol interference (ISI). First, we review previous
work on the subject which used the zero-forcing criterion under
strict assumptions about the channel and equalizer lengths.
Then, we derive a computationally efficient MMSE equalizer
which removes these restrictions, and is suitable for use with
stochastic gradient descent algorithms. Finally, we demonstrate
the performance of the proposed equalizer with simulations.

I. INTRODUCTION

Orthogonal multipulse modulation is a modulation scheme
that has been studied for many applications, and its many
variants include frequency shift keying (FSK) and pulse po-
sition modulation (PPM). The problem of equalizing M -ary
orthogonal signals has been known to be difficult [1]. In
fact, traditional uses of orthogonal modulation have been in
situations with little or no ISI, and thus there has been little
motivation to explore equalization of such signals to the extent
that equalization has been explored for linearly modulated
signals. Orthogonal modulation is a power efficient scheme,
but is bandwidth inefficient, and thus has attracted attention for
use in ultra wideband (UWB) communication systems where
ISI will be an issue.

The equalization of orthogonal multipulse signals has been
proposed in [2] and in [3] for the specific case of PPM. In
[2] a zero-forcing (ZF) decision feedback equalizer (DFE)
is proposed that employs an infinite impulse response (IIR)
feedforward filter. In [3] the ZF decision feedback equalizer is
derived under the following assumptions: the channel is monic
and minimum phase, the additive noise is ignored (i.e. since it
is a ZF equalizer), and the feedback portion of the equalizer
is as long as the channel (and possibly infinite).

In this paper, we propose a minimum mean-squared error
(MMSE) DFE for orthogonally modulated signals, and we
show the design equations and performance of the proposed
structure. Furthermore, we remove several assumptions inher-
ent in the previous work [2][3] – that is, we permit non-
monic and non-minimum phase channels, we accommodate
noise from any stationary random process, and we permit
the lengths of the FIR feedforward and feedback portions of
the equalizer to be design parameters. We then make several

modifications to the equalization structure, thereby permitting
a computational savings and the use of stochastic gradient
decent techniques for determining the MMSE equalizer tap
values. Finally, we include simulation results which demon-
strate the performance of the proposed equalizer.

In this paper, we use � to denote matrix transpose, ⊗ to
denote matrix direct product, Im to denote the m×m identity
matrix, 1m×n to denote the m × n matrix of all ones, and
0m×n to denote the m × n matrix of all zeros.

II. SYSTEM MODEL

M -ary orthogonal multipulse modulation is accomplished
by transmitting one of M orthogonal waveforms, whose time-
reversed versions are denoted si. Each waveform is assumed
to consist of P chips, where P ≥ M . Thus, orthogonal
multipulse modulation can be thought of as a block coding
scheme where information is conveyed by transmitting one of
M codes. Let S ∈ R

P×M be the matrix whose columns are
the M waveforms si. We assume the waveforms are mutually
orthogonal and have unit energy, so that S�S = IM . In this
paper, we consider a discrete-time model where each chip is
sampled once.
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Fig. 1. MIMO DFE block diagram.

The system model is shown in Fig. 1. We assume i.i.d. M -
ary orthogonal symbols are transmitted through a linear time-
invariant FIR channel of length Nh with impulse response
h = [h[0] . . . h[Nh − 1]]�. We assume additive noise w[n]
arises from a stationary random process with autocorrelation
Rww � E[w[n]w[n]�], assumed to be uncorrelated with the
data.



A vector model for the length Nf received vector at time
n is then

y[n] = Hx[n] + w[n] (1)

where y[n] ∈ R
Nf is the received vector, H ∈

R
Nf×(Nf+Nh−1) is the channel convolution matrix, x[n] ∈

R
Nf +Nh−1 is the vector of transmitted chips whose symbols

belong to columns of S, and w[n] ∈ R
Nf is the noise vector.

More precisely, we have

x[n] =
[
x[n] x[n − 1] · · · x[n − Nf − Nh + 2]

]�

H =




h[0] ··· h[Nf−1] 0 ··· 0

0 h[0] ··· h[Nf−1] 0 ··· 0

...
. . .

. . .
. . .

. . .
...

h[0] ··· h[Nf−1] 0

0 ··· 0 h[0] ··· h[Nf−1]




Note that a complete symbol is generated at times that are
multiples of P , so {x[−P + 1], . . . , x[−1], x[0]} would be a
complete symbol. In general, x[n] is not a stationary process
at the chip level, but is cyclostationary. Thus, the correlation
statistics of chips at even sampling times 2n are different from
those at odd sampling times 2n+1 when P = 2, for example.

At the receiver we employ a bank of M decision-feedback
equalizers. Each equalizer is operating only once every P
chips; hence, the number of computations for the bank of M
equalizers operating at the symbol rate is equal to M/P times
the number of computations required for a single equalizer
operating at the chip rate. The feedforward equalizers have im-
pulse response f i = [fi[0] . . . fi[Nf − 1]]� and length Nf ≥
P . The feedback equalizers gi = [gi[0] . . . gi[Ng − 1]]� each
have length Ng (assumed to be a multiple of M ), and operate
on the signal x̂[n] ∈ R

Ng . Note that the receiver front-end
has a bulk delay δr to align the feedforward equalizer outputs
to the desired phase before downsampling. If we let F =
[f0 . . . fM−1] ∈ R

Nf×M and G = [g0 . . . gM−1] ∈ R
Ng×M ,

then the output of the M equalizers before downsampling
becomes F�y[n − δr] + G�x̂[n]. However, we are only
interested in the equalizer outputs at times that are multiples
of P , and after downsampling we keep the δr-th polyphase
component. Thus, the output of the M equalizers is

z[n] = F�y[Pn − δr] + G�x̂[Mn]. (2)

Due to the downsampling operation, as well as the operation of
the decision device (discussed below), z[n] ∈ R

M , x[Pn−δr],
and x̂[Mn] do not live on the same time-scale. That is, z[n]
is a symbol-rate signal, y[Pn − δr] is a chip-rate signal, and
x̂[Mn] operates at M/P times the chip rate.

The optimal (i.e. maximum likelihood) decision device for
the AWGN channel is the minimum distance detector, which
amounts to choosing the maximum output of M correlators
max{S�y} as shown in Fig. 2. While such a memoryless
decision device is by no means optimal in the presence of
ISI, this is the decision device that is assumed in this paper
due to its simple implementation and low latency. The input
to the decision device is a block of M values at the symbol
rate, and the output is a serial stream of M samples where
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Fig. 2. ML detector for M -ary orthogonal signaling in AWGN channel.

only one chip per symbol is set to 1 and all others are 0. The
output operates at a rate M/P times the chip rate, and a 1
in the ith position represents a decision that the ith column
of S was the transmitted signal (i.e. the output is essentially
a stream of M -ary PPM symbols). The detector output is
then accumulated in the vector x̂[Mn], which is input to the
feedback equalizer. While the proposed receiver structure in
Fig. 1 does not explicitly show the correlation with each of the
signal waveforms si that appear in Fig. 2, these correlations
will be accomplished by the equalizers.

A single DFE typically has a delay of 1 in the feedback path.
However, since the decision device for orthogonal multipulse
modulation requires a block of data before making a decision,
the feedback signal estimates need to be delayed by one whole
symbol, or M detector output samples.

III. PREVIOUS WORK: ZERO-FORCING EQUALIZERS

In [2], ZF equalization of multipulse modulated signals was
proposed. A feedforward IIR filter is employed, and as such
this scheme does not fit within the framework of our proposed
structure. However, it is a ZF equalizer, and thus will suffer
from noise enhancement.

One of the schemes proposed in [3] for equalization of
PPM, referred to as the block DFE, is a special case of
our proposed structure with the following parameter choices:
δr = 0, Nf = M , F = ([IM 0M×(Nh−1)]H

�)−1, Ng =
Nh − 1, and G = −[0(Nh−1)×M INh−1]H�F . While [3]
concerns the equalization of PPM, this will be the (non-
unique) zero-forcing decision feedback equalizer for any M -
ary orthogonal signaling so long as P = M (though the
equalizer output would need to be multiplied by S�). As
mentioned above, several additional structures are considered
in [3] which involve feedback of tentative chip decisions, but
these structures are not considered in our paper.

Making the standard assumption of feedback of correct
decisions, we have x̂[n] = x[n − M ] and then x̂[Mn] =
[0(Nh−1)×M INh−1]x[Mn]. Then, partition the channel matrix
as H = [H0 H1] where

H0 = H[IM 0M×(Nh−1)]�

H1 = H[0(Nh−1)×M INh−1]�.

Note that F = (H�
0 )−1 and G = −H�

1 F = −(H−1
0 H1)�.

From (2) and (1), the output of the zero-forcing equalizer is



then

z[n] = F�y[Mn] + G�x̂[Mn]
= [IM 0M×(Nh−1)]x[Mn]︸ ︷︷ ︸

ISI-free symbol

+H−1
0 w[Mn]︸ ︷︷ ︸

noise term

(3)

and so the output of the zero-forcing equalizer proposed in [3]
is the ISI-free symbols plus filtered noise.

IV. THE PROPOSED MMSE EQUALIZER

The previously proposed zero-forcing schemes have several
shortcomings, as mentioned in the introduction: the channel
needs to be monic and minimum phase so that H−1

0 exists,
the additive noise is ignored since it is a zero-forcing equalizer,
and the feedback portion of the equalizer needs to be as long
as the channel. Here, we propose a constrained-length MMSE
block DFE which can handle a larger class of channels, does
not suffer from noise enhancement, and is suitable for use with
adaptive gradient descent algorithms (e.g. least mean squares).

The schemes proposed in [2][3] implicitly assume the delay
through the channel and equalizer is zero, which may be
reasonable in monic and minimum phase channels. For the
MMSE equalizer, we wish to allow arbitrary target delays
through the combined response of the channel and equalizer,
thereby accommodating a larger class of channels. Conse-
quently, we need to introduce several delay parameters. Let δ
be the desired delay through the channel and equalizer chain.
However, δ may not be a multiple of P ; thus, we will adjust
for this with the bulk delay at the front of the receiver. Let
δt = 	δ/P 
P and δr = δt − δ. So, δr is the residual delay
to align the chips to the correct sampling phase, and δt is the
new total target delay through the entire channel and equalizer
chain. Since δr and δt are functions of δ, the only design
parameter is δ.

Let Eδ ∈ R
(Nf +Nh−1)×M be the matrix of the desired

combined responses through the channel and each of the M
equalizers. We will leave Eδ unspecified for now, but certainly
we will want the desired equalizer response to resemble S�

so that the equalizer performs the correlation shown in the
decision device of Fig. 2. The output error is then

ε = F�y[Pn − δr] + G�x̂[Mn] − E�
δ x[Pn − δr]. (4)

As is common in MIMO problems, we can use the trace
or determinant of the autocorrelation of the output error as
a measure of the mean-squared error. As was pointed out
in [4], the same set of equalizer coefficients minimizes both
measures. Here, we choose the trace:

J(F ,G) = tr(E[εε�])
= tr(F�HRxxH�F + 2F�HRxx̂G

−2F�HRxxEδ + F�RwwF + G�Rx̂x̂G

−2G�R�
xx̂Eδ + E�

δ RxxEδ) (5)

where we have used the fact that the data and noise are

uncorrelated, and we define

Rxx � E[x[Pn − δr]x[Pn − δr]�] (6)

Rxx̂ � E[x[Pn − δr]x̂[Mn]�] (7)

Rx̂x̂ � E[x̂[Mn]x̂[Mn]�]. (8)

To find the MMSE equalizer settings, we begin by setting the
derivative of (5) with respect to G to zero

1
2

∂

∂G
J(F, G) = R�

xx̂H�F + Rx̂x̂G − R�
xx̂Eδ

� 0M×1

=⇒ G∗ = R−1
x̂x̂ R�

xx̂︸ ︷︷ ︸
�B

(Eδ − H�F ). (9)

And setting the derivative with respect to F to zero gives

1
2

∂

∂F
J(F, G∗) = HRxxH�F + HRxx̂G∗

−HRxxEδ + RwwF

= HRxxH�F

+HRxx̂(R−1
x̂x̂ R�

xx̂(Eδ − H�F ))
−HRxxEδ + RwwF

� 0M×1

After solving this equation for F , we have an equation for the
MMSE feedforward equalizer coefficients, shown on the next
page in (10).

A. The choice of Eδ

We have left the desired response matrix Eδ undefined up
to now. A reasonable choice might be to force each of the M
responses to the M signal waveforms (with appropriate delay),
so Eδ = [0M×δ S� 0M×(Nf +Nh−1−P−δ)]�. However, there
are other choices for the desired response that do not effect the
operation of the decision device. The “choose max” decision
device is invariant to an added constant, so long as the same
constant k is added to each of the M inputs.

Now we will motivate a specific choice of the matrix Eδ,
and make a modification to our equalizer structure. First,
consider a binary case where M = 2. The “choose max” deci-
sion device will then perform the operation max{z0[n], z1[n]}.
However, this decision rule is equivalent to deciding z0[n] −
z1[n] ≷ 0. This implies that for the binary case, we can make
the decision on a single statistic. Note that z0[n] − z1[n] =
(f0−f1)�y[Pn− δr]+ (g0−g1)�x̂[Mn] which means that
we can reduce the bank of two equalizers to a single equalizer,
and then make our decision. We will now show that for the
M -ary case, so long as the decision rule is “choose max”, we
can reduce the bank of M equalizers to a bank of M − 1
equalizers.

First, choose

Eδ = [0M×δ (IM − 1/M1M×M )S� 0M×(Nf+Nh−1−P−δ)]�

which corresponds to a response where the same constant k =
1/M has been subtracted from each of the M decision device
inputs, and thus will not change the operation of the decision



F ∗ =
[
H(Rxx − Rxx̂R−1

x̂x̂ R�
xx̂)H� + Rww

]−1

H(Rxx − Rxx̂R−1
x̂x̂ R�

xx̂)︸ ︷︷ ︸
�A

Eδ. (10)

device. Note that the matrix IM − 1/M1M×M has a zero
eigenvalue, which is a fact that we will exploit. Let U�U =
IM − 1/M1M×M be the Cholesky factorization. Since the
matrix is only semi-positive definite, the last row of the upper
triangular matrix U will be all zero. Next, define

E′
δ = [0M×δ US� 0M×(Nf+Nh−1−P−δ)]�

so that Eδ = E′
δU . From (2), (9), and (10) the MMSE

equalizer output is given by

z[n] = E�
δ A�y[Pn − δr] + (Eδ − H�F )�B�x̂[Mn]. (11)
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Fig. 3. Modified MIMO DFE block diagram.

Now, we will modify the equalizer structure by multipling
the M outputs of the equalizer by the M × M matrix U�,
as shown in Figure 3. Furthermore, instead of designing the
equalizers to have response Eδ , we will design them to have
response E′

δ. The output of the modified structure will be

U�z′[n] = U�


(E′

δ)
�A�︸ ︷︷ ︸

�(F ′)�

y[Pn − δr]

+ (E′
δ − H�F ′)�B�︸ ︷︷ ︸

�(G′)�

x̂[Mn]




= E�
δ A�y[Pn − δr]

+(Eδ − H�F )�B�x̂[Mn] (12)

where we have used Eδ = E′
δU . Thus, the output of the

modified structure in (12) is equivalent to the output of the
original structure in (11). Note that the last row of U is all
zero, so the last column of E′

δ is all zero, and therefore
the last column of both F ′ and G′ is all zero. We have
effectively reduced the bank of M equalizers to a bank of
M − 1 equalizers, at the expense of multiplication by an
M ×M lower triangular matrix U�. We are trading Nf +Ng

multiply operations for 2(M−1) multiplies since each column
of U� has only 2 unique elements. In an adaptive setting, the
computational savings is even greater since we need to update
Nf + Ng fewer parameters.

Let us return to the M = 2 example to show that our
previous intuition applies. For M = 2, we have

U =
1√
2

[
1 −1
0 0

]
=⇒ U�U = I2 − 1

2
12×2

and we see that we are effectively designing a single equalizer
to be what would have been the difference of 2 equalizers, as
expected.

We can think of this from a geometric perspective. Closer
inspection of the entries of the desired response U reveals
that the equalizer is effectively mapping the M orthogonal
waveforms to M equidistant points on an M − 1 dimensional
hypersphere (i.e. to the vertices of the regular M − 1 dimen-
sional simplex). This is the so-called simplex signal set [5],
whose signals have dimensionality M − 1 but maintain the
same Euclidean distance as that between M -ary orthogonal
signals. By translating and rotating the original signal set, we
incur a reduction in the signal dimensionality (and also the
number of equalizers), but we maintain the same performance.

B. The Feedback Signal

One point that we have overlooked thus far is the definition
of x̂[Mn]. We assume, as is common in DFE literature, that
the feedback signal consists of the correct symbol decisions
represented by unit vectors, so that x̂[Mn] is a windowed and
cross correlated version of the original signal x[Pn − δr], as

x̂[Mn] =


 0δ+P×Ng

INg/M ⊗ S
0(Nf+Nh−1−δ−P−NgP/M)×Ng



�

︸ ︷︷ ︸
�W

x[Mn − δr] (13)

where for convenience we assume Ng is a multiple of M , and
W ∈ R

Ng×(Nf+Nh−1). Due to the way have constructed W ,
we observe that Nf + Nh − 1 − δ − P − NgP/M must be
non-negative in order for W to make sense. We can always
artificially append zeros to the channel impulse response,
however, thereby increasing Nh to meet this condition.

Note from (10) that Rx̂x̂ needs to be inverted to calculate
the equalizer taps. While the data autocorrelation matrices will
be discussed in more detail in section IV-C, this matrix will
not be invertible for Ng ≥ 2M . For example when Ng = 2M ,
we will have

Rx̂x̂ = 1/M2

[
MIM 1M×M

1M×M MIM

]
(14)

which is not invertible.



The non-invertibility of this matrix implies that an additional
constraint is necessary. Here, we motivate a modification to
the feedback signal that effectively causes the autocorrelation
matrix to be full rank while providing a computational savings.
Let us consider a specific example where M = 2 and Ng = 4,
so our decision feedback equalizer spans Ng/M = 2 symbols.
Consider 2 possible responses for the feedback filter, g and g′

where

g =
[
g[0] g[1] g[2] g[3]

]�
g′ = g +

[
+a +a −a −a

]�
.

Note that both of these feedback equalizers give the
same output, regardless of the value of a since x̂ ∈
{[1010], [1001], [0110], [0101]}, and so g�x̂ = (g′)�x̂ ∈
{g[0] + g[2], g[0] + g[3], g[1] + g[2], g[1] + g[3]}. It is no
coincidence that the vector [+a +a−a−a]� is a basis vector
for the nullspace of Rx̂x̂ in (14). Thus, by choosing the free
parameter a to be a = g[3], for example, we can obtain the
same output from a feedback equalizer with 3 non-zero taps
since the last tap of g′ is equal to zero.

In the M -ary case with arbitrary Ng ≥ M , any set of
feedback equalizer taps g has a corresponding set of taps g′

that gives an identical output, but has at least Ng/M − 1 of
its taps equal to zero. In particular, we can find a g′ where
g′[kM − 1] = 0 for all integers k such that 2 ≤ k ≤ Ng/M .
We omit the proof due to space constraints.

This equalizer with selected taps constrained to zero can
be represented more conveniently in matrix notation as an
equalizer of length Ng − Ng/M + 1 that operates on a
decimated version of x̂. The decimated entries correspond to
the zeroed equalizer taps, and the decimated signal can be
represented as[

IM 0M×Ng−M

0Ng−Ng/M+1−M×M INg/M−1⊗[IM−1 0M−1×1]

]
︸ ︷︷ ︸

�V

x̂[Mn]. (15)

Note that V ∈ R
(Ng−Ng/M+1)×Ng and our new short-

ened equalizer G′′ ∈ R
(Ng−Ng/M+1)×M has output

(G′′)�V x̂[Mn] which we claim can made to have identi-
cal output to G�x̂[Mn] for arbitrary G. It turns out that
Rx̂x̂ ∈ R

Ng×Ng will have rank Ng − Ng/M + 1, and by
throwing out Ng/M − 1 carefully selected samples (i.e. by
forming V x̂[Mn]), the autocorrelation of the decimated signal
becomes V Rx̂x̂V � which will be full rank.

C. Summary of MMSE Equalizer

It is now useful to summarize the proposed MMSE equalizer
and to include the modifications made in sections IV-A and
IV-B. The structure shown in Figure 3 still applies. Now, we
will drop the primes (e.g. F ′ → F ) that were adopted in
previous sections. The design parameters are δ, Nf , and Ng;
the channel and noise characteristics are assumed to be known.

First, find the Cholesky factorization U�U = IM −
1/M1M×M , which is a fixed matrix that depends only
on M . Next, form the desired response as Eδ =

[0M×δ US�0M×(Nf +Nh−1−P−δ)]�. Then, we can determine
F ∈ R

Ng×M and G ∈ R
(Ng−Ng/M+1)×M using (9) and (10).

Note that the last column of F and G will both be zero, so
effectively we have M − 1 equalizers. Also note that, under
the assumption of correct decisions, the feedback equalizers
are operating on a decimated version of the decisions given
by

x̂[Mn] = V Wx[Pn − δr] (16)

where x̂[Mn] ∈ R
Ng−Ng/M+1, W windows and cross corre-

lates the appropriate samples of x with S as defined in (13),
and V performs the decimation as defined in (15).

The equalizer output is then given by

z[n] = F�y[Pn − δr] + G�x̂[Mn].

The equalizer output is then multiplied by U�, and the result
is passed to the “choose max” decision device.

The data autocorrelation matrices needed in the equalizer
design equations (9) and (10) remain to be defined. Consider a
length NM vector of data x′[Mn] which contains a stream of
PPM chips from the signal set consisting of the columns of the
identity matrix. Define S � (IN ⊗S). Then, any data stream
x[Pn] consisting of chips from an arbitrary orthogonal signal
set S can be represented as Sx′[Mn]. Note that S�S = INM .

The autocorrelation of a length NM stream of i.i.d. PPM
symbols aligned to the symbol boundary is given by the block
Tœplitz matrix

R = E[(x′[Mn])(x′[Mn])�]

=
1

M2
(1NM + (IN ⊗ (MIM − 1M )))

=
1

M2




MIM 1M 1M · · ·
1M MIM 1M

1M 1M
. . .

...


 . (17)

Thus, the autocorrelation of a stream of chips from an ar-
bitrary signal set is given by SRS�. We use the notation
(SRS�)i:j, k:l to denote the extraction of rows i through j
and columns k through l of this matrix, and we assume N is
as large as necessary to permit this extraction.

From (6)-(8), (16), and (17) we have

Rxx � E[x[Pn − δr]x[Pn − δr]�]
= (SRS�)δr :δr+Nf+Nh−2,δr:δr+Nf+Nh−2

Rxx̂ � E[x[Pn − δr]x̂[Mn]�]
= RxxW�V �

Rx̂x̂ � E[x̂[Mn]x̂[Mn]�]
= V WRxxW�V �.

Observe that for the special case of an AWGN channel with
no ISI, we have H = I and Rww = σ2

wI . In this case, the
detector reduces to deciding max{U�F�y} = max{(IM −
1/M ∗ 1M×M )S�/(1 + σ2

w)y} = max{S�y} which is the
ML detector.



While we have assumed in this paper that the channel
H and noise statistics Rww were known, this is not likely
to be the case in practice, and thus an adaptive scheme is
desirable. Furthermore, the direct computation of the equalizer
coefficients from equations (9) and (10) may not be feasible.
Fortunately, the cost functions are quadratic, indicating we
could use the LMS algorithm to calculate F and G via the
update equations

ε[n] = F [n]�y[Pn − δr] + G[n]�x̂[Mn]
−E�

δ x[Pn − δr]
F [n + 1] = F [n] − µ1y[Pn − δr]ε[n]�

G[n + 1] = G[n] − µ2x̂[Mn]ε[n]�

where µ1 and µ2 are small positive constants. Note that the
above equations implicitly assume training data is available
since x[Pn−δr] appears in the error calculation. Alternatively,
the system could be operated in a decision-directed mode.

Lastly, while our block structure may seem complicated at
first glance, it requires significantly fewer operations than a
single scalar equalizer operating at the chip rate. A scalar
equalizer operating at the chip rate would require P (Nf +
Ng) multiply-accumulate (MAC) operations to equalize one
symbol. On the other hand, our structure only requires (M −
1)(Nf +Ng−Ng/M +1) MACs, plus an additional 2(M−1)
multiplies for the matrix U�.

V. SIMULATIONS

Here, we consider a simulation setup with the following
properties. We employ 4-ary Walsh codes for the signal
waveforms, and we include 2 samples of guard time. Thus,

S� =
1
2

[ +1 +1 +1 +1 0 0
−1 +1 −1 +1 0 0
+1 −1 −1 +1 0 0
−1 −1 +1 +1 0 0

]

and so M = 4 and P = 6. As the channel impulse response,
we choose h = [(2/3)(−8/15)(1/5)(2/5)(−4/15)]�, and we
assume the noise is AWGN so Rww = σ2INf

. The equalizer
design parameters are chosen to be Nf = 2P , Ng = M , and
δ = 4.
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Fig. 4. Simulated performance of proposed structure

The performance is shown in Fig. 4, and is compared with
the case of no equalization, and the matched filter bound
(which may not be attainable, even for an ML receiver with
exponential complexity). Further simulations of the proposed
equalizer appeared in [6] for the PPM case, where we obtained
performance 3 dB better than that of [3].

Another simulation was conducted to demonstrate the con-
vergence of an adaptive equalizer when the LMS is employed.
For the same setup above, with SNR = 10dB, we have
plotted the time history of the MSE in Fig. 5. The equalizers
were initialized to all zeroes, and converged to the MMSE
solution after approximately 1000 symbols.
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VI. CONCLUSION

In this paper we proposed a constrained-length FIR MMSE
DFE for orthogonal multipulse modulated signals, and we
showed the design equations and performance of the proposed
structure. This structure permitted several benefits over previ-
ously proposed unconstrained-length ZF schemes – namely,
less noise enhancement, lower computational load, general-
ization to a larger class of channels, and the ability to easily
apply gradient decent algorithms.

Further work could investigate properties of (possibly blind)
adaptive implementations of this structure and the effect of
DFE error propagation.
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