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Abstract—This paper considers a problem of distributed null-
forming, in which multiple wireless transmitters steer a null
toward a designated receiver by only adjusting their carrier
phases. Since each transmitter transmits at full power, the system
maximizes “power pooling” gains for cooperative communica-
tion or jamming, while simultaneously protecting a designated
receiver. Analysis in a noiseless setting shows that, while the
received power at the designated receiver, as a function of the
transmitted phases, is non-convex with multiple critical points,
all of its local minima are also global minima. This implies that a
null can be formed using a distributed, scalable protocol based on
gradient descent: each transmitter adapts its phase based only on
aggregate feedback broadcast by the receiver (so that feedback
overhead does not increase with the number of transmitters),
along with an estimate of its own channel gain (which can be
obtained, for example, via reciprocity). Simulations show that
the convergence rate actually improves with the number of
transmitters, and that the algorithm is robust to noise, substantial
channel estimation errors, and oscillator drift.

Index Terms—Distributed nullforming, cooperative transmis-
sion, virtual antenna arrays, non-convex, wireless security.

I. INTRODUCTION

We propose and analyze a scalable algorithm for distributed
nullforming, where multiple wireless transmitters achieve a
null at a target receiver by adapting only their phases. This
allows transmission at full power, thus maximizing incoherent
power pooling gains, while protecting the designated receiver.
We show that the natural strategy of minimizing the total
received power using gradient descent can be implemented
in a decentralized fashion: each transmitter can adapt its
phase based only on aggregate feedback regarding the received
signal, and an estimate of its own channel gain to the receiver.
The received power at the designated receiver as a function
of the transmitted phases is, however, a highly non-convex
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function. Hence a key technical contribution is to show that all
local minima are in fact global minima and that critical points
that are not global minima are locally unstable. This guaran-
tees practical convergence of the proposed gradient descent
distributed nullforming algorithm. Simulations show that the
convergence rate improves with the number of transmitters.
Thus, the proposed algorithm is scalable on several fronts:
(i) it only requires aggregate feedback from the receiver, so
that the feedback overhead remains constant as the number
of transmitters increases; (ii) each transmitter only requires
local information (i.e., an estimate of its own channel to the
receiver), which can be acquired efficiently using reciprocity
in TDD systems using broadcast from the receiver (e.g., using
the feedback packets themselves); and (iii) nulls are formed
more effectively for larger transmit clusters.

To the best of our knowledge, other than our own prelimi-
nary work presented in [22], this is the first paper to develop
theory and algorithms for distributed phase-only nullforming.
Prior work on nullforming, both centralized [1], [2], or par-
tially decentralized, [3], [4], involves adapting both gains and
phases at the transmitters to minimize quadratic cost functions
that unlike the highly non-convex cost function of our setting,
have a single global optimum.

Motivating applications include cooperative jamming or
communications, where the goal is to maximize the net trans-
mitted power using multiple transmitters while simultaneously
protecting a designated receiver. For example, in a cognitive
radio system serving primary and secondary users [5], the
cooperating transmitters could form a distributed base station
sending a common message to a secondary receiver, fully
exploiting the dynamic range of each transmitter’s radio fre-
quency (RF) chain while also protecting a primary receiver [6].
In general, pooling transmissions among multiple cooperating
nodes, each transmitting at full power, provides an incoherent
power gain to the receivers in the system proportional to the
number of transmitters. Transmit clusters with several inexpen-
sive low-power nodes can emulate a larger single high-power
transmitter through incoherent power pooling gains. Likewise,
recent algorithms on wireless security critically rely on nodes
blanketing a landscape with full power jamming signals while
protecting a cooperating receiver through nullforming [7].

A. Background and related work

Performance gains due to Multiple Input Multiple Output
(MIMO) techniques such as beamforming, spatial multiplex-
ing, space division multiple access (SDMA), and space-time
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coding are well established, and MIMO forms an integral part
of current wireless standards. This paper falls in the larger
context of distributed MIMO, or DMIMO, systems, wherein
groups of cooperating transceivers organize themselves into
virtual antenna arrays which can, in principle, emulate any
MIMO technique that a centralized array can support. Beam-
forming and nullforming are of particular interest, since they
provide building blocks for techniques such as spatial division
multiple access (SDMA) and interference alignment.

While the number of antennas in a centralized MIMO
transceiver is limited by size and cost, DMIMO allows us
to scale up to large virtual antenna arrays by exploiting
the natural geographical distribution of cooperating nodes.
Since the required array size scales with wavelength, DMIMO
techniques are of particular significance at lower carrier fre-
quencies. The key bottleneck in the practical realization of
DMIMO is synchronization. Unlike conventional centralized
MIMO where transmit antennas are driven by a single os-
cillator, transceivers in DMIMO have independent oscillators
with unpredictable phase offsets relative to each other. This
complicates distributed transmission strategies such as beam
and nullforming, which require precise control over the phase
of the transmitted signals to ensure that these signals arrive at
the receiver with the appropriate phase relationships.

Approaches to DMIMO include a significant body of work
that uses high-bandwidth wired backhaul links for the synchro-
nization needed to synthesize virtual arrays from base stations
in cellular [27] and access points in WiFi networks [26]. Our
focus, by contrast, is on DMIMO techniques that are amenable
to all-wireless deployments (e.g., ad hoc networks for commu-
nication and sensing) with little coordination overhead. We are
particularly interested in techniques that scale with the number
of cooperating nodes forming the virtual array, in terms of
overhead and protocol complexity.

Recent work on synchronization for all-wireless DMIMO
has mainly focused on distributed transmit beamforming [9] -
[16]. One approach is for each transmitter to adapt separately
based on a common aggregate feedback from the receiver.
This approach is attractive for its scalability compared to
methods that require individual feedback from the receiver
to each transmitter. The earliest example of this approach is
the one-bit feedback algorithm for distributed beamforming
in [9], where each transmitter perturbs its phase randomly,
and the receiver broadcasts a single bit of feedback indicating
whether the received power is better or worse. If better, the
transmitters keep their phase perturbations; if worse, they undo
them. This completely decentralized randomized ascent was
proven to converge to phase coherence at the receiver [13].
Experimental demonstrations of this algorithm and its variants
on commodity hardware are reported in [11], [12].

The aggregate feedback for the one-bit algorithm allows
the receiver to be oblivious of the number and identity
of transmitters, thus providing protocol-level scalability, and
simplifying prototyping efforts like [11], [12]. This paper,
sets the groundwork for a similar approach to distributed
nullforming. Nullforming requires far tighter synchronization
than beamforming, to which the one-bit feedback approach
cannot be easily adapted. However, as shown in this paper, an

aggregate feedback model, and its associated protocol-level
scalability, is still possible for distributed nullforming.

While there is a substantial literature on nullforming using
centralized antenna arrays, [1], [2], work on distributed null-
forming is evidently limited to [3], [4]. However, [3], [4] do
not meet our desire for scalability, as each transmitter needs
the channel of every transmitter to the receiver. By contrast
in our algorithm each transmitter needs only its own channel.
Thus, to the best of our knowledge, the present paper is the
first to prove that distributed nullforming can be achieved in
scalable fashion using aggregate feedback. Furthermore, the
zero-forcing techniques in [1]- [4] control both transmit gains
and phases, unlike the more difficult phase-only setting here.

The present paper builds on our preliminary work presented
in a conference paper [22], but goes well beyond it by provid-
ing a detailed theoretical analysis, including characterization of
the nature of the cost function and the convergence of the pro-
posed decentralized descent algorithm. The conference paper
[22] assumes equal received power levels from all transmitters,
which guarantees the existence of an ideal null with phase-
only adjustments. In practice, if each transmitter sends at full
power, received powers can be unequal (transmitters may have
different peak powers, and their channels to the receiver may
have unequal strength). The analytical characterization and
convergence analysis in this paper accommodates this more
general setting, where an ideal null may not exist.

B. Outline

Section II motivates our approach to nullforming by show-
ing that nullforming is far more sensitive to phase errors, and
hence requires significantly more stringent synchronization,
than beamforming. This rules out simple variants of the one-
bit beamforming algorithm for nullforming. We present a
simple nullforming algorithm formulated as a gradient-descent
minimization of the received power in Section III, and show
that it can be implemented in a decentralized manner using
only local channel knowledge and a small amount of aggregate
feedback. Section IV characterizes the critical points of the
cost function (which is the received power as a function of the
transmitter phases) and shows that all local minima are global
minima. Section V argues that this guarantees the practical
convergence of gradient descent to a global minimum of the
cost function. While our formal analysis is for an idealized
model, simulations in Section VI verify the robustness to large
channel estimation errors and also shows that the convergence
speed actually increases with the number of transmitters. The
latter observation leads to the remarkable fact that the total
amount of feedback overhead required to achieve nullforming
— not merely the overhead per iteration — actually decreases
as the number of transmitters increases. Section VII concludes
with a discussion of related open problems.

II. CHALLENGES IN DISTRIBUTED NULLFORMING

We first highlight the difficulties of maintaining synchro-
nization in DMIMO systems and quantify the added stringency
required for nullforming as compared to beamforming. Un-
der a per-antenna power constraint and assuming equal-gain
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channels, an ideal N -antenna beamformer provides an N2-
fold coherent power gain on target. Incoherent transmission,
e.g., transmitting with random phases, provides an N -fold
power pooling gain, on average. Ideal nullforming results in
zero power on the target. In a DMIMO system, since each
antenna is driven by a separate independent oscillator, phase
errors result in some loss of performance with respect to ideal.

To quantify the relationship between phase errors and the
resulting beamforming/nullforming gains, we can consider
an N -node transmit cluster transmitting narrowband signals
through equal-gain channels to an intended receiver such that
the resulting baseband signal at the receiver can be written as

s[k] =

N∑
i=1

gej(θi[k]+wi[k]) (1)

where g is the common channel gain, θi[k] is the intended
received phase from transmitter i after propagation, and wi[k]
is the phase error at time k. For beamforming, the θi[k] are
all equal, e.g., θi[k] = 0. For nullforming, they satisfy

N∑
i=1

ejθi[k] = 0. (2)

We assume wi[k] ∼ N (0, σ2
w[k]) and E {wi[k]wj [k]} =

ρ2σ2
w[k] for −1 ≤ ρ ≤ 1.

Appendix A derives expressions connecting the statis-
tics of the phase errors to the beam/nullforming power
E{s2[k]} observed at the receiver. Denoting ∆[k] =
exp

(
−(1− ρ2)σ2

w[k]
)
, the mean received powers are

E{s2[k]}=

{
g2
[
N2∆[k]+N(1−∆[k])

]
beamforming

g2N(1−∆[k]) nullforming.
(3)

These results show the direct relationship between phase
error statistics and mean beamforming/nullforming power. It
is straightforward to see that the beamforming/nullforming
powers approach the ideal values when the phase errors are
small, i.e., ∆[k] → 1, and approach incoherent power levels
when the phase errors are large, i.e., ∆[k]→ 0.

To demonstrate the sharp relationship between phase errors
and nullforming performance, consider a system with N = 10
transmit nodes and time-invariant channels with unit mag-
nitude. At time t = kT = 0, we assume the transmitting
nodes are perfectly synchronized and have perfect channel
state knowledge. Even with time-invariant channels, the inde-
pendent oscillators begin to drift for time t > 0. Assuming, for
purposes of example, the oscillators independently drift with
a standard deviation of 62 ps per second [19] and ρ = 0, the
mean beam and nullforming powers are plotted as a function
of elapsed time from synchronization in Figure 1.

This example shows that both beam and nullforming per-
formance are near ideal when the elapsed time from syn-
chronization is small, but degrade as it becomes large as the
oscillators drift and the channel phase estimates become stale.
The performance loss is much steeper for nullforming. Thus,
to maintain a null 10 dB better than incoherent transmission,
the nodes must resynchronize within approximately 120 ms.
Deeper nulls require more frequent resynchronization. Intu-
itively, since nulls tend to be relatively sharp, nullforming
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Fig. 1. Mean beamforming and nullforming powers as a function of elapsed
time from synchronization for an N = 10 transmit node DMIMO system
with carrier frequency 2.4 GHz using oscillators that independently drift with
a standard deviation of 62 ps in one second.

performance tends to degrade more quickly than beamforming
and requires a commensurately tighter synchronization.

Finally, beyond this sensitivity of nullforming, we note
another key difference that makes nullforming significantly
more difficult than beamforming. Beamforming just requires
that the received phases be equal and can be achieved if each
transmitter precompensates its channel to the receiver. For this
each transmitter only needs its own complex channel gain to
the receiver. By contrast, the θi that form a null intricately
depend on each other, especially when the channel gains are
unequal. That is why earlier nullforming papers such as [3]
and [4] require that each transmitter have all transmitter’s
complex channel gains. A key novelty of this paper is to
propose an algorithm where each transmitter only needs its
complex channel gain to the receiver.

III. SCALABLE ALGORITHM FOR NULLFORMING

Consider an N -transmitter array. Suppose the channel phase
from the i-th transmitter to the receiver is rie

νi[k] at time
slot k and denote the estimate of the channel phase as ν̂i[k].
Each transmitter precompensates its channel phase to the
receiver by the estimate ν̂i[k], and inserts an additional phase
θi[k], which it adapts in response to receiver feedback, to
effect nullforming. Thus, at time slot k, assuming each node
transmits an unmodulated carrier for notational simplicity, the
i-th node transmits the phase compensated baseband signal
ej(θi[k]−ν̂i[k]). With w[k] ∼ CN (0, σ2

w), the aggregate base-
band signal at the receiver is thus

s[k] =

N∑
i=1

rie
j(θi[k]+φi[k]) + w[k] = R[k] + jI[k], (4)

where φi[k] = νi[k]− ν̂i[k] is the channel estimation error.
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Our algorithm for nullforming is the gradient descent min-
imization of the objective function J(θ) defined as

J(θ)
.
=

∣∣∣∣∣
N∑
i=1

rie
jθi

∣∣∣∣∣
2

(5)

where θ = [θ1, · · · , θN ]>. Note that J(θ[k]) is the received
power in the k-th time slot. For a suitably small µ > 0, the
gradient descent is specified as

θ[k + 1] = θ[k]− µ ∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

(6)

where, ∂J(θ)∂θ =
[
∂J(θ)
∂θ1

, · · · , ∂J(θ)∂θN

]>
.

For our analysis of the properties of J(θ), we will assume
an idealized setting of no noise, zero channel estimation errors
and static channel gains1. Under these idealized conditions, we
have

R[k] =

N∑
i=1

ri cos(θi[k]), I[k] =

N∑
i=1

ri sin(θi[k]). (7)

According to (6), the ith transmitter then updates its phase as

θi[k + 1] = θi[k]− µriIm
[
e−jθi[k]s[k]

]
(8)

= θi[k] + µri (sin (θi[k])R[k]− cos (θi[k]) I[k]) .

We note from (8), that transmitter i only requires knowledge
of its own channel gains ri, νi and one additional complex
number s[k] which is common to all transmitters. Hence, given
the common feedback s[k] and local channel knowledge, the
gradient descent (8) can be implemented by each transmitter
independently in a purely decentralized manner. Furthermore,
the common feedback s[k] ensures that the nullforming feed-
back overhead is fixed and independent of the size of the
transmitter array. The feedback signals {s[k]} can be broadcast
to the transmitters over, for example, a packetized digital
wireless link.

A. Practical considerations

Note that the effective baseband complex channel gain is
the cumulative effect of the propagation channel, the RF
transmit and receive hardware, and carrier frequency offsets
between transmitter and receiver. Out of these, the largest
and most dominant effects arise in practice from carrier
frequency offsets. The effect of carrier frequency offsets can
be mitigated without any centralized coordination by having
the transmitters lock themselves to a common reference, e.g.,
a global positioning system (GPS) frequency reference. If
GPS is not available or undesirable, another possibility is to
simply use the common feedback messages broadcast by the
receiver for carrier frequency synchronization. A variety of
procedures have been developed in the literature for frequency
synchronization, e.g., those described in [16], [3], [4], [21],
and any of these are appropriate for use with the gradient
descent nullforming algorithm developed here.

1Simulations in Section VI show that the gradient descent nullforming
algorithm is robust to the violation of these assumptions.

An important consideration is how best to obtain the local
channel state information required to implement (8). Since
each transmitter only needs its own channel gain, an elegant,
overhead-free approach for time division duplex (TDD) sys-
tems is to employ reciprocity, with each transmitter estimating
its channel gain based on the signals broadcast by the receiver
(e.g., the packets carrying the aggregate feedback s[k]). An-
other implicit feedback technique, not requiring reciprocity,
is discussed in [16]. For frequency division duplexed (FDD)
channels, one option is to employ an initialization process
where each transmitter sends a known training signal to the
receiver. The receiver then estimates, quantizes, and feeds
back the estimated channel gains to the transmitters. While
the initialization overhead is proportional to the number of
transmitters, the subsequent gradient descent procedure in (8)
only requires common feedback of a single complex number
s[k] in each timeslot.

IV. CRITICAL POINTS AND NULLS

In this section, we investigate the structure of the cost
function J(θ) in terms of its critical points. The next sec-
tion considers the convergence of the decentralized gradient
descent algorithm. To develop analytical insight, we make the
following simplifying standing assumptions for all results in
this and the next section: That the channel phases are time-
invariant (νi[k] is constant over k for all transmitters i ∈
{1, ..., N}), the channel estimation errors are zero (φi[k] ≡ 0
for all k and all i ∈ {1, ..., N})), and that there is no noise
in the receiver feedback (w[k] = 0). To avoid triviality, we
assume that at least two transmitters have nonzero channel
gains (i.e., ri > 0 for at least two values of i ∈ {1, ..., N}).

The critical points of the algorithm by definition satisfy

∂J(θ)

∂θ
= 0. (9)

The ij-th element the Hessian H(θ) is

[H(θ)]ij =
∂2J(θ)

∂θi∂θj
. (10)

If a critical point is a local minimum, then the Hessian at that
point is positive semidefinite. In general, we can have critical
points which are not local minima, and this is indeed the case
for the cost function in (5).

The technical properties derived in this section, and their
consequences, are summarized as follows:
• All nulls and critical points of J(θ) lie along manifolds.

All points in the null manifold J(θ) = 0 are critical
points but not all critical points are in the null manifold.

• The Hessian of J(θ) is singular everywhere (unlike stan-
dard settings for gradient descent, where the Hessian is
strictly positive definite at local minima). This precludes
the use of standard gradient descent convergence and
stability results and requires a more careful analysis of
the properties of J(θ).

• All local minima are global minima. We characterize the
depth of the null corresponding to this global minimum
in terms of the channel gains {ri}.
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• We characterize all critical points which are not local
minima (i.e., such that the Hessian has at least one
negative eigenvalue).

• The key technical take away from this section used in
Section V is that the only critical points at which the
Hessian is positive semidefinite are global minima.

The following section provides a formal analysis the prop-
erties of the critical points of J(θ).

A. Properties of critical points

For every α > 0, the set of θ for which J(θ) = α is either
empty or is a nontrivial manifold as

J(θ) =

N∑
i=1

r2i + 2

N∑
i=1

N∑
l=1,l 6=i

rirl cos(θi − θl). (11)

That is, the cost function depends only on phase differences,
and does not change when we add a constant offset to
all phases. Thus, for all scalar β and the N -vector u =
[1, · · · , 1]>, J(θ) = α implies J(θ+ βu) = α. For example,
J(θ) = 0 corresponds to a null manifold.

Similarly,

∂J(θ)

∂θi
= −2ri sin θi

(
N∑
l=1

rl cos θl

)

+ 2ri cos θi

(
N∑
l=1

rl sin θl

)
(12)

= −2

N∑
l=1,l 6=i

rirl sin(θi − θl), (13)

Again, the gradient depends only on phase differences, hence
we can add constant offsets without changing it. Thus, any
critical point lies on a critical manifold. As explained in
Section V, this complicates stability analysis.

All members of the null manifold J(θ) = 0 satisfy∑N
l=1 rl cos θl = 0 and

∑N
l=1 rl sin θl = 0. Substituting these

equalities into (12), we see that any point on the null manifold
is also a critical point. However, there are critical points that
do not lie on the null manifold. From (12), these other critical
points must satisfy

tan θi = tan θl ∀{i, l} ⊂ {1, · · · , N}. (14)

This corresponds to the phases being offset by integer multi-
ples of π, i.e.,

(θi − θl) mod π = 0 ∀{i, l} ⊂ {1, · · · , N}. (15)

From (13), the condition in (15) is also sufficient for the
gradient to be zero. Thus, (15) and the null manifold together
constitute all the critical points of J(θ).

We define the minimum value of J(θ)

J∗ = min
θ∈RN

J(θ). (16)

Should the null manifold be non-empty, then J∗ = 0. How-
ever, for some choices of the gains ri there may not be phases
θi for which J(θ) = 0. In essence, if one channel gain is
larger than the sum of all the rest, then it is clear that the

best we can do is to make sure we coherently subtract all of
the smaller gains from the largest one to minimize J(θ). The
more interesting result is that, whenever this condition is not
satisfied (i.e., whenever no one gain is larger than the sum of
the rest), then an ideal null is possible. The theorem below,
proved in Appendix B, formalizes this characterization.

Theorem 4.1: Assume ri ≥ ri+1 > 0 and N > 1. Then
J∗ > 0 iff

r1 >

N∑
l=2

rl. (17)

Under (17) the θi that minimize J(θ) obey: For integer ml,
and l ∈ {2, · · · , N}

θ1 − θl = (2ml + 1)π (18)

resulting in the coherent subtraction of the smaller gains
yielding the following minimum:

J∗ =

(
r1 −

N∑
l=2

rl

)2

. (19)

Remark: It is possible that Theorem 4.1 has been proved
eslsewhere, but we did not find a citation for the proof of
the “only if” part, and therefore decided to provide a self-
contained proof.

We now examine the structure of the Hessian. From (13)
we have

[H(θ)]il =

{
−2
∑N

l=1

l 6=i
rirl cos(θi − θl) i = l

2rirl cos(θi − θl) i 6= l.
(20)

The Hessian is always singular because all row sums are zero,
i.e.,

N∑
l=1

[H(θ)]il = 0. (21)

for all i. If we define

c(θ) = [cos θ1, · · · , cos θN ]> and (22)

s(θ) = [sin θ1, · · · , sin θN ]> (23)

then it is readily seen that

H(θ) = 2diag{r}
(
c(θ)c>(θ) + s(θ)s>(θ)

)
diag{r}

− 2diag{δi}Ni=1, (24)

where

δi = ri cos θi

N∑
l=1

rl cos θl + ri sin θi

N∑
l=1

rl sin θl. (25)

Hessian at global minima: As characterized by Theorem 4.1,
the global minimum is an ideal null with J∗ = 0 if (17) does
not hold, and is given by (19) if it does hold. In either case
(i.e., whether or not (17) holds), the Hessian will be positive
semidefinite at these global minima, since global minima are
also local minima. However, the Hessian is never positive
definite because it is singular everywhere. This is consistent
with the fact that the global minima are not isolated but rather
lie on nontrivial manifolds.
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The next Lemma provides a compact expression for the
Hessian at the critical points that do not lie on the null
manifold. This is then used to show in Theorem 4.2 that
critical points that do not correspond to a global minimum
are unstable.

Lemma 4.1: Suppose θ is a critical point that is not a null.
Then the following hold:
(i) There exist I and Ic that partition {1, · · · , N}, and obey

(θi − θl) mod 2π =

{
0 ∀ {i, l} ⊂ I
π ∀ i ∈ I and l ∈ Ic . (26)

(ii) The Hessian defined in (20) can be expressed as:

H(θ) = 2

[
xx> − diag{x}

N∑
i=1

xi

]
, (27)

where x = [x1, · · · , xN ]> obeys:

xi =

{
ri ∀ i ∈ I
−ri ∀ i ∈ Ic

. (28)

The proof of this result follows directly from (15) and (20).
The following section analyzes the properties of the Hessian

of J(θ) to further characterize the critical points.

B. Eigenvalues of the Hessian

The following theorem shows that H(θ) has a negative
eigenvalue at any critical point that is not a global minimum.

Theorem 4.2: Assume ri ≥ ri+1 > 0 and N > 1. If θ is a
critical point that is not a global minimum, then H(θ) has a
negative eigenvalue.

A proof of this theorem is provided in Appendix C. As at
a local minimum H(θ) cannot have a negative eigenvalue,
Theorem 4.2 shows that a critical point that is not a global
minimum cannot be a local minimum. This has implications
to the stability analysis in the next section.

It is worth noting that at a null δi = 0 in (25), i.e. from
(24)

H(θ) = 2diag{r}
[
c(θ)c>(θ) + s(θ)s>(θ)

]
diag{r}

(29)
Thus, at a null, H(θ) is positive semidefinite and in fact has
rank at most 2. Of course as H(θ) is positive semidefinite at
a global minimum, its eigenvalues must be nonnegative with
at least one zero.

V. STABILITY

Having characterized the nature of critical manifolds in the
last section, we now establish the practical uniform stability
of the gradient descent algorithm under our idealized setting
(no noise, ideal channel phase estimates, time-invariant chan-
nel), by showing three things. (A) That the phase estimates
uniformly converge to a single point on a critical manifold,
where uniformity is with respect to the initial time. (B) That all
critical points that are not global minima are locally unstable.
(C) That the global minima are locally stable.

The practical implication of (A-C) are as follows. Uniform
convergence to a point under idealized assumptions assures

that such convergence is robust to departures from idealiza-
tions, [23], [24]. The role of (B) and (C) is to show that in
practical terms the point to which such robust convergence can
occur must be a global minimum. This is so as (B) shows that
convergence to a critical point that is not a global minimum
if at all possible, will never be sustained as the slightest noise
will drive the phase trajectories away from them.

While (B) is based on standard arguments, the proofs of (A)
and (C) are nontrivial because in our setting the Hessian is
never positive definite. Since the gradient and the Hessian are
bounded and the gradient is Lipschitz continuous, arguments
similar to that in [28] show the following: For sufficiently
small µ, there exists 0 < ε(µ) < 1 such that along the
trajectories of (8) or equivalently (6), there holds,

J(θ[k+ 1]) ≤ J(θ[k])− (1− ε(µ))

∥∥∥∥∥ ∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

∥∥∥∥∥
2

. (30)

As J(θ[k]) ≥ 0, this does imply that the gradient is in
`2. However, as is well known (see [29] for examples), this
does not by itself imply that the gradient actually goes to
zero. Unless the gradient goes to zero the updates in (6) or
equivalently in (8), will not cease and convergence will not
occur. Indeed example convergence analyses of descent based
algorithms (e.g., Newton-Raphson) in [28], that go beyond
just showing that the gradient is in `2, assume a positive
definite Hessian. Even in the classical LMS algorithm, one
cannot conclude that convergence to a point occurs without a
condition known as persistent excitation, which is a variation
of the positive definiteness condition on the Hessian [30], .

The local stability of the global minimum is also compli-
cated by the fact that, without a positive definite Hessian,
linearization around a minimum yields a transition matrix
that has eigenvalues at unity. Indeed, to address the lack of
positive definiteness, the recent paper [31] invokes the highly
technical center manifold theory. Given these difficulties, we
prove (A) from (30) by appealing to the further device of
Lasalle’s invariance principle, [25], summarized in Theorem
5.1. This convergence result is stated in Theorem 5.2. Theorem
5.3 proves (B), the local instability of critical points that are
not global minima. Theorem 5.4 proves (C) without having to
appeal to center manifold theory.

(A) Convergence: Theorem 5.1 summarizing Lasalle’s invari-
ance principle refers to the lack of explicit dependence on time
in an update kernel. An example is the update kernel in (8).
The update depends on k only through the value of θi[k] at
that k.

Theorem 5.1: Consider the state equation

ξ[k + 1] = f(ξ[k]), ∀k ≥ k0 (31)

where k and k0 are integers, and f(ξ[k]) has no explicit
dependence on k. Suppose the following conditions hold: (a)
ξ[k] is uniformly bounded for every finite ξ[k0]. (b) There
exists a nonegative function V (ξ[k]) such that the following
holds for all k ≥ k0 along the trajectories of (31):

V (ξ[k + 1]) ≤ V (ξ[k]). (32)
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(c) For all finite ξ[k0], V (ξ[k]) is uniformly bounded. Then
ξ[k] uniformly converges to a trajectory of (31) on which
V (ξ[k]) is a constant.

The next theorem proved in Appendix D, establishes (A)
and the fact that along the trajectories of (8) J(θ[k]) is
nonincreasing.

Theorem 5.2: Under (7), (8) and (5), there exists a µ∗ > 0,
such that for all 0 < µ < µ∗, initial time k0 and θ[k0] ∈ RN
the following hold:

J(θ[k + 1]) ≤ J(θ[k]) ∀k ≥ k0 (33)

and

lim
k→∞

∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

= 0 (34)

Further, the convergence in (34) is uniform in k0 and there
exists a critical point θ∗ such that

lim
k→∞

θ[k] = θ∗. (35)

Thus, θ[k] is guaranteed to uniformly converge to a point
in the critical manifold.

Intuition behind proof of convergence: While the details are in
the appendix, the intuition behind the preceding development
is as follows. First, (33) follows from (30). Second to show
(35) by invoking Lasalle’s invariance principle, we observe
that gradient descent operates on the unwrapped phases θ,
which can therefore be unbounded. Lasalle’s principle is ap-
plied to the bounded wrapped phases ξ to conclude that these
converge. We then show that, for small enough adaptation gain
µ, we can guarantee that the unwrapped phases do not jump
around too much under our gradient descent algorithm, and
hence inherit the convergence of the wrapped phases.

(B) Instability of critical points which are not minima: Lin-
earization of (8) around any θ∗ is given by, η[k + 1] =
[I − µH(θ∗)]η[k], with η = θ − θ∗. From Theorem 4.2, at
a critical point that is not a global minimum, [I − µH(θ∗)]
has a positive eigenvalue. Thus we have:

Theorem 5.3: Consider (8), under (7). Then (8) is locally
unstable around any critical point that is not a global mini-
mum.

(C) Local stability of global minima: This proof is complicated
by the fact that the Hessian is singular. Thus, at every θ, I −
µH(θ) has an eigenvalue at 1 and standard theory does not
prove local stability. Suppose J1 is the smallest value J(θ)
takes at a critical point that is not a global minumum. Suppose,
at the initial condition, θ[k0], J(θ[k0]) < J1. Then because
of (33) J(θ[k]) < J1, for all k ≥ k0. Thus the only critical
points that can be attained are global minima. As (34) assures
convergence to a critical point, the limit point has to be a
global minimum. We have thus shown the following.

Theorem 5.4: Consider (8) under (7). With k0 the initial
time suppose J(θ[k0]) < J1 above. Then uniformly in k0
there holds

lim
k→∞

J(θ[k]) = J∗.
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Fig. 2. Performance of the 1-bit feedback algorithm for beam and nullform-
ing.

VI. SIMULATION RESULTS

We now present simulations. Throughout, the receiver noise
is AWGN and oscillator drift is Brownian motion. Observe
that a feedback rate of even 100 packets per second, with
16 bytes/packet to represent a double-precision floating point
complex number represents a rate of only 1600 bits/sec, far
below the capacity of typical feedback channels. SNR is
defined as the ratio between the signal power of a single
transmitter at the receiver at the null target and the noise
power. Received power is computed by averaging over several
runs. Incoherent power is the expectation of the total received
power when the received phases are random, equalling N for
N transmitters when ri = 1.

A. Centralized and 1-bit algorthms

A key difficulty in benchmarking our distributed algorithm
against a centralized algorithm is that existing centralized null-
forming algorithms all adapt both phase and amplitude (and
hence cannot achieve a null with full power transmission as
we do). When the {ri} are unequal, the only way we know to
find a nullforming solution is to run our descent algorithm. We
therefore consider equal {ri} and even N , where a centralized
null can be obtained by pairwise cancellations. However, such
ad hoc strategies are not only restrictive, but also susceptible
to channel estimation errors. Figure 3 plots (using an analytical
computation) the received power versus SNR for fixed channel
phase estimation error uniformly distributed over [−5◦, 5◦]
(well below the estimation errors one sees on commodity
hardware [12]). Even for high SNR, the null is no better than
-16 dB, in contrast to the robust nullforming obtained by our
algorithm; see Figs 4 and 5 discussed later.
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Fig. 3. Effect of channel errors on the performance of an non-iterative
nullforming algorithm (N = 10, ri ≡ 1).

Next, consider the one-bit beamforming algorithm of [13],
adapted for nullforming by doing randomized descent instead
of ascent. Figure 2 shows the received power for a typical
run for both beam and nullforming with N = 10, and modest
oscillator RMS drift of 0.2◦sec1/2 and SNR of 40 dB. Clearly,
the one-bit algorithm works very well for beamforming, but
fails for nullforming.
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Fig. 4. Power at null target vs. SNR with constant φi ∼ U [0, π/2].

0 100 200 300 400
−80

−60

−40

−20

0

20

Number=of=iterations

R
ec

ei
ve

d
=p

o
w

er
(d

B
)

SNR=70dB

SNR=50dB

SNR=20dB

SNR=10dB

Fig. 5. Power at null target with constant channel error: ri ∼ U [1, 2] and
φi ∼ U [0, π/2].

B. Noise, channel errors, phase noise and oscillator drift

For N = 10, Fig. 4 depicts the received power achieved
by our algorithm as a function of SNR without oscillator
drift, but with large time-invariant channel phase estimation
errors (modeling severe quantization or imprecise channel
estimation), with φi uniformly distributed over [0, π/2]. Figure
5 models channel estimation errors in both gain and phase.
The transmitter assumes that each channel is unity, whereas
each ri is actually uniformly distributed over [1, 2] and each
φi is uniformly distributed over [0, π/2]. These results show
the robustness of our nullforming algorithm: despite these
very substantial channel estimation errors, the received signal
power nears the SNR floor. This suggests that for slowly
varying channels, infrequent, even highly inaccurate or heavily
quantized channel estimation suffices. This is in contrast to
Figure 3, which shows the deterioration of the ad hoc one-
shot strategy under far more benign conditions: perfect ri and
φi uniformly distributed over [−5◦, 5◦].

Figure 6 shows performance under channel time variations.
The transmitters always assume unit channel gains. Each
transmitter has an initial error in channel phase estimation,
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SNR=70dB and 50dB, Coherence=1

SNR=50dB, Coherence=5

SNR=20dB, Coherence=1 and 5

Fig. 6. Power at null target with time varying channel gain and phase errors.
Coherence, C means that the channel changes at every C-th iteration.

uniformly distributed in [0◦, 45◦] that is never corrected.
Thereafter, each channel changes every C-th iteration of the al-
gorithm. Each change in ri is by a factor of εi ∼ U [.99, 1.01],
representing a one percent change. The change in φi is additive
by δi ∼ U [−1.5◦, 1.5◦]. Thus, with C = 1 at a feedback rate
of 100 packets/sec the gain can change by as much as 170%
over a second and the phase by 150◦, even discounting the
initial error. We call C the coherence.

Suppose θi are such that one has a perfect null with unit
channel gains and no phase errors. The actual received power
due to a change in channel phase by δi and gain by a factor
εi is:

Jchange(θ) = E

∣∣∣∣∣
N∑
i=1

εie
j(θi+δi)

∣∣∣∣∣
2
 ,

where the expectation is over εi ∼ U [.99, 1.01] and δi ∼
U [−1.5◦, 1.5◦]. Consider Jchange(θ) averaged over all θi
such that

∑N
i=1 e

jθi = 0. This would represent a theoretical
floor for the algorithm performance for C = 1 without any
initial channel error. Figure (7) provides an estimate of this
average, by averaging the power over 1000 runs with θi
obtained independently in each run by running our algorithm
in the noise free case. Evidently, while for SNRs of 50 and
70 dB our algorithm matches this performance, it is less than
3dB away for SNR of 20dB, even though Figure 7 does not
account for the initial phase error of as much as 45◦.

Also interesting are the plots with C = 5. At SNR of 50
and 70 dB, the received power rapidly declines between the
channel transitions, and then expectedly returns to the C = 1
level at transitions. The fact that the C = 1 curve coincides
at these two SNRs accords with the fact that in Figure 7 the
received power at these two SNRs are identical, and that at the
channel transitions the phase and gain change by the requisite
amounts. As interesting is the fact that performance for both
C ∈ {1, 5} is identical for SNR of 20 dB; evidently the noise at
this SNR swamps the effect of the channel transitions. Again
note that Figure 7 ignores the initial phase error.

Fig. 7. Ideal performance with C = 1 and channel change as in Figure 6.
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Fig. 8 plots received power vs. phase noise, modeled as in
Section II, with φi = 0. It is virtually indistinguishable from
the theoretical floor (3), shown in red. Fig. 9 plots received
power vs. the rms oscillator drift between two iterations of
the algorithm, for different SNRs and with unit channel gains.
The null power is determined by SNR for small drifts, but
the effect of drift dominates for when the rms drift between
iterations exceeds 0.1◦. Fig. 10 has comparable results with
unequal Rayleigh distributed channel gains.

C. Convergence speed and scalability

As a common packetized feedback is broadcast to all
transmitters, scalability is determined by how the convergence
speed depends on N . Figure 11 depicts the relation between
convergence speed and N : For N = 50 a −40dB null is
attained in just five iterations. Compellingly, a null of −40
dB is acquired in just 5 iterations, which would, for example,
only take 50 ms at a feedback rate of 100 packet/s. These
simulation results attest to the scalability of our algorithm,
showing that the convergence speed improves with N , even
though we decrease the adaptation gain µ with N . Intuitively,
this is because the dimension of the null manifold grows
with N , shrinking its distance from generic points. Thus, the
overhead associated with the packetized common feedback
does not grow with the number of transmitters.

D. Effect on coherent beams

Fig. 12 shows performance with phases initialized to form a
coherent beam at a location and then deploying our algorithm
to nullform at a random target. A thousand random null
targets were selected. The figure has the beam and null power
averaged over these 1000 runs, as a result of the phases
generated by our algorithm. The adjustments made by our
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algorithm barely dent the beam at the original location, despite
achieving a deep null at the null targets, at least on average.
Intuitively, this could be because a coherent beam is insensitive
to small phase adjustments while nulls are very sensitive. A
beam at one location could therefore be largely preserved with
minor degradation, while applying small phase perturbations
to synthesize a deep null at another designated location. This
raises the intriguing possibility of forming both beams and
nulls with phase-only adjustments, providing a building block
for SDMA.

VII. CONCLUSION

We have presented a provably convergent, scalable, dis-
tributed nullforming algorithm that allows each transmitter to
transmit at full power while steering a null toward a designated
receiver through adaptation of the transmission phases using
decentralized gradient descent. Unlike standard amplitude-
phase adaptation with quadratic cost functions, the proof
of convergence for phase-only adaptation requires detailed
examination of a highly non-convex cost function to prove that
all local minima are global minima. Our algorithm is scalable
at the protocol level (the receiver can be oblivious as we add
transmitters) due to our aggregate feedback model.

Our simulations also show scalability in terms of null-
forming performance: convergence time actually declines with
the number of transmitters. An analytical characterization of
whether we can actually make a stronger assertion of scalabil-
ity (“nulls become easier to find with more transmitters”) is
therefore an interesting problem for further investigation. It is
also compelling that the algorithm tolerates large channel es-
timation errors and meets optimistic analytical floors for time
varying channels. Both indicate deeper mechanisms worthy
of analytical exploration. Finally, simulations in Section VI-D
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leave open the intriguing possibility of devising provably con-
vergent schemes for multiple beams and nulls (a key building
block for SDMA). In particular, it is important to explore the
tradeoffs in designing robust, decentralized mechanisms for
such more complex settings, comparing phase-only adaptation
against adaptation of both amplitudes and phases.

APPENDIX A
BEAMFORMING AND NULLFORMING POWER

This appendix derives the expressions for mean beamform-
ing and nullforming power under the assumption of equal
channel gains g and zero-mean Gaussian distributed phase
errors. Given a received signal s[k] as in (1) with θi[k] = 0,
the mean received beamforming power at time k is

E
{
|s[k]|2

}
= g2E


∣∣∣∣∣
N∑
i=1

ejwi[k]

∣∣∣∣∣
2


= g2
N∑
i=1

N∑
j=1

E {ci[k]cj [k] + di[k]dj [k]}

with ci[k] = cos(wi[k]) and di[k] = sin(wi[k]). From c2i [k] +
d2i [k] = 1 and ci[k]cj [k] + di[k]dj [k] = cos(wi[k]− wj [k]),

E
{
|s[k]|2

}
= g2N + g2

N∑
i=1

∑
j 6=i

E {cos (wi[k]− wj [k])} .

Straightforward integration yields E {cos (wi[k]− wj [k])} =
exp

(
−(1− ρ2)σ2

w[k]
)
. Hence, the mean received power dur-

ing beamforming at time k is as in (3) as,

E
{
|s[k]|2

}
= g2N + g2

N∑
i=1

∑
j 6=i

exp
(
−(1− ρ2)σ2

w

)
= g2N + g2N(N − 1)∆[k]

= g2
[
N2∆[k] +N(1−∆[k])

]
with ∆[k] = exp

(
−(1− ρ2)σ2

w[k]
)
.

For nullforming, the transmit phases are selected so that (2)
holds. The mean received power is then

E
{
|s[k]|2

}
= g2E


∣∣∣∣∣
N∑
i=1

ej(θi[k]+wi[k])

∣∣∣∣∣
2


= g2
N∑
i=1

N∑
j=1

E {pi[k]pj [k] + qi[k]qj [k]}

where pi[k] = cos(θi[k]+wi[k]) and sin(θi[k]+wi[k]). Since
p2i [k] + q2i [k] = 1 and pi[k]pj [k] + qi[k]qj [k] = cos(θi[k] −
θj [k]) cos(wi[k]−wj [k])+sin(θi[k]−θj [k]) sin(wi[k]−wj [k]),
we have

E
{
|s[k]|2

}
= g2N

+ g2
N∑
i=1

∑
j 6=i

cos(θi[k]−θj [k])E{cos(wi[k]−wj [k])}

+ g2
N∑
i=1

∑
j 6=i

sin(θi[k]−θj [k])E {sin(wi[k]−wj [k])} .

Straightforward integration yields E {cos(wi[k]− wj [k])} =
exp

(
−(1− ρ2)σ2

w[k] =
)

= ∆[k] and
E {sin(wi[k]− wj [k])} = 0. Hence,

N∑
i=1

∑
j 6=i

cos(θi[k]−θj [k]) =

[
N∑
i=1

cos θi[k]

]2
+

[
N∑
i=1

sin θi[k]

]2
−N

= −N.

The mean nullforming power then follows as

J [k] = g2N + g2(−N)∆[k] = g2N(1−∆[k]).

APPENDIX B
PROOF OF THEOREM 4.1

We first prove that no nulls exist iff (17) holds. First suppose
that (17) does hold. Then J∗ 6= 0 as∣∣∣∣∣

N∑
l=1

rle
jθl

∣∣∣∣∣ ≥ r1 −
N∑
l=2

rl > 0.

Now suppose that (17) is violated i.e. for all i ∈ {1, · · · , N},

ri ≤
∑
k 6=i

rk. (36)

Use induction on N . For N = 2, (36) implies that r1 = r2
and a null is achieved by θ1 = 0 and θ2 = π.

Suppose now the result holds for some N = K. Con-
sider N = K + 1. Define θ̄ = [θ2, · · · , θK+1]

>, and
r̄(θ̄) =

∑K+1
i=2 rie

jθi . Assume first that r2 ≤
∑K+1
i=3 ri.

Then, from the induction hypothesis, there exists θ̄(1) such that
r̄
(
θ̄
(1)
)

= 0. Furthermore, we have r̄(0) =
∑K+1
i=2 ri ≥ r1

by our condition for sufficiency. Since r̄(θ̄) and hence its
magnitude is a continuous function of θ̄, we can interpolate
continuously between 0 and

∑K+1
i=2 ri. In particular, there

exists a set of phases θ̄∗ such that
∣∣∣r̄(θ̄∗)∣∣∣ = r1, i.e. for some

δ, r̄(θ̄∗) = r1e
jδ . Then a null is provided by θ1 = π + δ and

[θ2, · · · , θK+1]> = θ̄
∗
.

If r2 >
∑K+1
i=3 ri, then we can find θ̄

(1) such that∣∣∣r̄ (θ̄(1))∣∣∣ = r2 −
∑K+1
i=3 ri. By hypothesis, 0 < r2 −∑K+1

i=3 ri ≤ r1. Thus,
∣∣∣r̄ (θ̄(1))∣∣∣ ≤ r1 ≤ |r̄ (0)|. We can

again interpolate between r̄
(
θ̄
(1)
)

and r̄ (0) to find θ̄∗ such

that
∣∣∣r̄(θ̄∗)∣∣∣ = r1, and attain a null as before.

It remains to prove that under (17), (19) holds and the
minimizing θi obey (18). As under (17) a null is unattainable
(15) holds at all critical points. Without loss of generality
assume that at a critical point θ1 = 0. Thus at a minumum
of J(θ), θl, l 6= 1 are integer multiples of π. Suppose Io
comprises i, such that θi is an odd multiple of π. Then from
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(11) there holds:

J(θ) =

N∑
i=1

r2i + 2

N∑
i=1

N∑
l=1,l 6=i

rirl cos(θi − θl)

=

N∑
i=1

r2i + 2
∑
i∈Io

∑
l∈Io\{i}

rirl − 2
∑
i∈Io

∑
l/∈Io

rirl

+ 2
∑
i/∈Io

∑
l/∈{Io

⋃
{i}}

rirl =

∑
i/∈Io

ri −
∑
i∈Io

ri

2

As all ri > 0, and (17) holds, (19) holds and Io = {2, · · · , N}
at a minimum.

APPENDIX C
PROOF OF THEOREM 4.2

First consider N = 2. Suppose θ is a critical point that
is not a global minimum. If a null is not possible then from
Theorem 4.1 and (18), (θ1 − θ2) mod 2π = 0. The same
holds when a null is possible as r1 = r2. Thus (20) implies
that both diagonal elements of the symmetric matrix H(θ)
are negative, i.e. H(θ) must have a negative eigenvalue.

For N > 2 from Lemma 4.1, (27) holds under (28). Note
|xi| ≥ |xi+1| > 0. Define

sl = xl

N∑
i=1

xi. (37)

We assert that at a critical point that is not a global minimum,
sl > 0 for at least two distinct l ∈ {1, · · · , N}. To prove this
consider two cases.
Case I: A null is impossible. Then from Theorem 4.1, (17),
(18) and (27) there exists i ∈ {2, · · · , N} such that

x1 >

N∑
l=2

|xl| and x1xi > 0. (38)

Thus, as
∑N
i=1 xi > 0, sl > 0 for l ∈ {1, i}.

Case II: A null is possible. From Theorem 4.1 for all i,

|xi| ≤
n∑

l=1,l 6=i

|xl|. (39)

Clearly there must exist at least two indices k and l such xk
and xl have the same sign as

∑N
i=1 xi. Thus again there are

two distinct indices for which si > 0.
Now observe from Lemma 4.1 that with

D = diag {x}
N∑
i=1

xi = diag {d1, · · · , dN}, (40)

H(θ) = 2
(
xx> −D

)
with at least two elements of D positive.

As eigenvalues do not change under symmetric permuta-
tions, without loss of generality assume d1 > 0 and d2 > 0.
As N > 1, and all xi 6= 0, there exist nonzero scalars p1 and

p2, such that
[
p1, p2,0>

]
x = 0, where the zero vector is in

RN−2. As H(θ) = H>(θ) it has a negative eigenvalue as

[
p1, p2,0

>] (xx> −D)
p1p2

0

 = −d1p21 − d2p22 < 0

APPENDIX D
PROOF OF CONVERGENCE

Because of (30), (33) holds. Now we invoke Theorem
5.1 whose application requires the boundedness of θ[k] ab
initio. For this difficulty, we reformulate the state space to
make it a priori bounded, by choosing ξi = (θi mod 2π)
as the elements of the new state vector. Define f(·) =
[f1(·), · · · , fN (·)]>, and ξ = [ξ1, · · · , ξN ]>. The definition
of the ξi, ensures that this state space is bounded. Observe,
J(θ) = J(ξ) and

∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

=
∂J(ξ)

∂ξ

∣∣∣∣
ξ=ξ[k]

. (41)

Define,

gi(ξ) =

(
ξi − µ

∂J(ξ)

∂ξi

)
mod 2π.

Under these definitions (8) leads to (31). By defintion this
state space is bounded. Identify V (·) with J(·). Then because
of (30), V (·) satisfies all the conditions in Theorem 5.1.
Consequently, ξ[k] converges uniformly to a trajectory where
J(ξ[k]) = J(θ[k]) is a constant. From (30) and (41) this must
correspond to the trajectory:

∂J(θ)

∂θ

∣∣∣∣
θ=θ[k]

=
∂J(ξ)

∂ξ

∣∣∣∣
ξ=ξ[k]

= 0.

Further along this trajectory ξ[k + 1] = ξ[k]. It remains to
show that this also implies that θ[k + 1] = θ[k]. Observe,

|θi[k + 1]− θi[k]| ≤ 2µri

N∑
l=1

rl.

Suppose 0 < µ ≤ µ̄ assures (30). Choose

µ∗ < min

{
µ̄, min
i∈{1,··· ,N}

{
π

ri
∑N
l=1 rl

}}
. (42)

Then as ξi = (θi mod 2π), for all 0 < µ < µ∗, ξi[k + 1] =
ξi[k] implies θi[k + 1] = θi[k]. This completes the proof.
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