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Abstract—The “split ADC” architecture enables continuous dig-
ital background calibration by splitting the die area of a single
ADC design into two independent halves, each converting the same
input signal. The two independent outputs are averaged to pro-
duce the ADC output code. The difference of the two outputs pro-
vides information for a background-calibration algorithm. Since
both ADCs convert the same input, when correctly calibrated, their
outputs should be equal, and the difference should be zero. Any
nonzero difference provides information to an error-estimation al-
gorithm, which adjusts digital-calibration parameters in an adap-
tive process similar to a least mean square algorithm. This paper
describes the calibration algorithm implemented in the specific re-
alization of a 16-bit 1-MS/s algorithmic cyclic ADC. In addition
to correcting ADC linearity, the calibration and estimation algo-
rithms are tolerant of offset error and remove linear scale-factor-
error mismatch between the ADC channels. Simulated results are
presented confirming self-calibration in approximately 10 000 con-
versions, which represents an improvement of four orders of mag-
nitude over previous statistically based calibration algorithms.

Index Terms—Adaptive systems, analog–digital conversion, cal-
ibration, digital background calibration, mixed analog–digital in-
tegrated circuits, self-calibrating.

I. INTRODUCTION

A. Goals

T HE TREND in submicrometer CMOS ADC design is to-
ward all-digital self-calibrating ADC architectures. The

goal of the work described in this paper was to develop a self-
calibrating ADC architecture specifically designed to exploit the
advantages of scaling in deep-submicrometer CMOS. Three cri-
teria were defined for the desired architecture.

1) Digital implementation: In submicrometer CMOS, the
preferred tradeoff is to move complexity into the dig-
ital domain whenever possible. The desired architecture
should implement all calibration and error correction digi-
tally while relaxing required performance and complexity
of analog circuitry.

2) Background calibration: The calibration process should
operate continuously in the background, without inter-
rupting the foreground processing of the ADC input signal.
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Fig. 1. “Split ADC” architecture.

3) Deterministic calibration procedure: The time constant of
calibration adaptation should be short enough to track out
parameter variations due to environmental influences such
as temperature. In this paper, the term “deterministic” is
used to draw a contrast with statistical methods, which are
poorly suited to calibration of high-resolution ADCs.

This paper describes a calibration algorithm for a 16-bit
1-MS/s algorithmic ADC [1], [2] implementing the “split
ADC” architecture. In contrast to most previous techniques
[3]–[13], the split ADC architecture enables a deterministic
digital-calibration procedure, operating continuously in the
background, with a minimal impact on analog complexity. Use
of parallel ADC paths to cancel input signal contribution was
independently developed and presented in [14]–[16], while that
approach is similar to the work presented in this paper; the
approaches differ in important details of implementation.

This paper is organized as follows. A general overview of
the split ADC architecture as implemented in this paper is pro-
vided in Section I-B. Sections II and III describe details of the
least mean square (LMS) calibration algorithm and error-esti-
mation theory, respectively, with implementation specific to the
16-b 1-MS/s cyclic ADC in [1] and [2]. Compared with the cir-
cuit-level design work presented in [1] and [2], the novel content
of this paper is in Sections IV–VI, which describe the effect of
offset and scale-factor errors, the iterative matrix-solution tech-
nique included in the LMS algorithm, and results showing how
ADC performance is affected by choice of system parameters.

B. Split ADC Concept

The concept of the split ADC architecture is shown in Fig. 1.
The ADC is split into two channels, each converting the same
input and producing individual output codes and . The av-
erage of the two outputs is reported as the ADC output code .
The background-calibration signal is developed from the differ-
ence between codes and . If both ADCs are correctly
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Fig. 2. (a) Cyclic ADC block diagram. (b) Residue-amplifier plot.

calibrated, the two outputs will agree, and the difference
will be zero. In the presence of nonzero differences, the pattern
of “disagreements” in can be examined in an error-estima-
tion process to adjust calibration parameters in each ADC and
drive the difference and the ADC errors to zero.

Comparison with statistical background-calibration tech-
niques shows the advantage of using the difference for
the calibration signal. In [3], for example, extracting the DAC
mismatch signal in the background requires that a sufficiently
large number of samples have been collected to decorrelate the
unknown signal at the ADC input. In contrast, for the split ADC
approach, the magnitude of the unknown ADC input signal is
greatly reduced by the subtraction in the calibration signal path.
Moreover, it is not necessary to accumulate a large number of
conversions to decorrelate the input signal.

This concept is referred to as a “split ADC” (rather than a
“dual ADC”), since it essentially splits the analog area of a
single ADC design and, as shown in [1] and [2], has negligible
impact on analog complexity in terms of overall area, power,
bandwidth, or noise performance.

II. SPLIT ADC CYCLIC CALIBRATION

A. Cyclic ADC Review

For the implementation of the split ADC concept described
in this paper, an algorithmic (or cyclic) converter was chosen
for simplicity, since the only parameter needed to calibrate
ADC linearity is the gain of the residue amplifier. To show how
the residue-amplifier gain is involved in the calibration process,
consider the example of a conventional cyclic ADC shown in
Fig. 2(a). At the start of the conversion, the S/H switch is in the

position. The cyclic converter samples the input, compares
it to a threshold, applies the cyclic gain , and adds or sub-
tracts a reference depending on the comparator decision. The

input-to-residue-output characteristic implemented is shown in
Fig. 2(b). In the first cycle, the input is mapped to a residue

by

(1)

For all following cycles, the S/H input is switched to the
residue-amplifier output. For the second cycle, the first cycle
residue is the input, so by the same process we get

(2)

Moreover, for the third cycle

(3)

Pausing here to rearrange, we obtain

(4)

Rearranging to solve for (what we want for the
output code of an ADC) gives

(5)

In the general case of cycles, the converter provides a se-
quence of decisions which satisfy

(6)

Of the two terms on the right-hand side of (6), the first term
represents the ideal output code of the ADC which is deter-
mined from the comparator decisions . Digital calibration and
correction is implemented by estimating the cyclic gain to the
converter accuracy, calculating the powers of for use as de-
cision weights in a lookup table (LUT), and accumulating the
output code as the decisions become available in the cyclic
conversion process. To provide margin for errors such as com-
parator offset and noise [9], a gain is usually chosen.

The second term in (6) from the last ( th) residue corre-
sponds to the quantization error of the ADC. Choosing
implies that cycles will provide fewer than bits of resolu-
tion; the second term in (6) can be used to determine how many
cycles are required to achieve a desired resolution.

B. Split ADC Cyclic Implementation

A simplified system block diagram of the split ADC imple-
mentation is shown in Fig. 3. The analog portion of each cyclic
ADC consists of an input S/H, a 16-bit linear gain block (nom-
inal gains ), comparators, and a three-level
DAC. The output of the analog subsystem is a three-level

decision for each cycle of the conversion process.
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Fig. 3. Converter block diagram.

For each side of the split, digital outputs and are accu-
mulated from the comparator decisions using a LUT containing
the cycle decision weights, which are calculated from the gain
estimates and .

The calibration process, indicated by the thick gray line as
shown in Fig. 3, operates in the digital domain so that , ,
and their associated LUTs are correct to within converter accu-
racy. It should be emphasized that this process operates continu-
ously and in the background; foreground conversion of the input
signal is not interrupted.

Note that the block diagram in Fig. 3 shows separate S/H
circuitry for each channel. Depending on the maximum input

and the mismatch in timing between channels, the dy-
namic error from sampling through two separate paths may
limit system performance. Although this was not a problem in
the case in [1] and [2], if necessary, the effects of dynamic er-
rors can be mitigated by modifying the S/H sampling circuitry
so that the critical timing path is common to both channels.

C. LMS Calibration Loop

To consider the operation of the LMS calibration loop, we
first define and as the fractional error in estimates
and relative to the true analog gains and

(7)

The error-estimation process, described in Section III as fol-
lows, provides continuously updated zero-bias estimates and

of the errors in the estimated gains and . Estimates
and are used in a negative-feedback LMS procedure, shown
in the thick gray line in Fig. 3, to update and

(8a)

(8b)

As the and are periodically updated, the decision-
weight LUT is recalculated. Equilibrium is reached at the cor-
rect and values when the estimated errors and
reach zero (on average). The LMS coefficient controls the
time constant of the calibration adaptation and is subject to a
tradeoff between accuracy and speed of adaptation. Note an ad-
vantage of the LMS technique: The estimates and need
not be accurate, as long as they are zero-bias and (on average)
point the convergence of (8) in the correct direction. The gen-
eral LMS technique is well established [4], [11], [19]; the novel
contributions of this paper are in the error-estimation technique
described in Sections III–VI.

III. ERROR ESTIMATION

A. Basic Error-Estimation Theory

To simplify the development of the error-estimation theory,
we will temporarily ignore offset and scale-factor mismatches
between the and ADCs. The effect of these errors will be
discussed in Section IV.

For each side of the split, digital outputs and are ac-
cumulated from the comparator decisions using

(9a)

(9b)

in which is the comparator decision in the th cycle, and
the required decision weights are stored in a LUT calculated
from powers of the gain estimates and . To consider the
effect of errors in and , we suppose that the estimates
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in (9) are in error as defined in (7). Substituting (7) into (9) and
approximating gives

(10a)

(10b)

The expressions for the actual ADC output codes each con-
sist of two terms. Comparing with (6) shows that the first term
(indicated with “ ”) corresponds to the correct
output code. Since both ADCs are converting the same analog
input, these must be equal (to within quantization error) even if
the decision trajectories and are different. The second
term corresponds to the errors in the “A” and “B” output codes.
Note that the error is simply proportional to and , the
fractional error in the gain estimates and . The pro-
portionality terms, designated as error coefficients and

, are determined by the decision trajectories and
and weighting terms . As shown in Fig. 3, the
and values can be accumulated during each conversion
using the comparator decisions and a separate error-coefficient
LUT. Note that, since the errors and are ultimately forced
to zero by the calibration loop, the accuracy requirements for

and in the error-estimation process are not as
stringent as for the and code LUTs. Thus, a single LUT
stored in ROM is used with values precalculated using the
nominal gain .

When the two output codes are averaged to obtain the overall
ADC output code, the result is

(11)

Therefore, if the errors and can be driven sufficiently
close to zero, the overall ADC output code will be the correct
value .

When we subtract to get the difference , the
“ ” terms cancel, and the result is

(12)

Thus, the difference depends only on the estimate errors
and , with error coefficients and .

In principle, we could solve a 2 2 matrix equation using
, , and values from two conversions to esti-

mate and . This is indicated in the equation as follows in

which the “1” and “2” subscripts indicate values from two dif-
ferent ADC conversions:

(13)

A difficulty in using this approach with the simple cyclic
ADC shown in Fig. 2 is that the decision paths and
(and, therefore, the coefficients and ) are deter-
mined entirely by the input signal. In the case of a dc input, the
coefficients and are unchanged from conversion
“1” to “2”, the 2 2 matrix in (13) is singular, and no informa-
tion about and can be determined.

B. Need for Multiple Residue-Mode Amplifier

To avoid matrix singularity, the coefficients and
must be varied on a conversion-to-conversion basis.

This is achieved by varying the decision trajectories using
a multiple residue-mode amplifier, shown in Fig. 4(a) and
described in more detail in [1] and [2]. The redundancy enabled
by choosing allows multiple diversity of valid decision
sequences corresponding to a given input.

Fig. 4(b) shows input–output plots of the four possible residue
modes, as well as for each plot of the resulting SDK coeffi-
cients versus output code over the ADC full-scale (FS) range.
The residue mode is determined by the 2-bit “PATH” digital
control, which allows a choice of different residue modes for
the and converters, as well as variation of residue mode on
a conversion-to-conversion basis. By varying residue modes, it
is possible to force different decision trajectories and
and, thereby, vary the and coefficients.

For additional insight into the choice of residue modes, con-
sider the examples shown in Table I. For each residue mode, the
calculated SDK coefficient values are given for representative
input levels of 0.1 and 0.9 of FS. For an input of 0.1 FS, for ex-
ample, the value of the SDK coefficient ranges from a maximum
of in the “HIGH” residue mode to a minimum of
in the “LOW” mode. When both channels are exercised through
different combinations of residue modes, the result is sufficient
variation of the and coefficients that the matrix
in (13) is nonsingular, even in the case of a dc input. Therefore,
a “busy” input is not required to extract calibration information
for and . Intuitively, we see from (12) that if and

are varied in an independent fashion, then the only way
for to always be zero is for and to both be zero.

Note from the column in Table I for an input of 0.9 FS that the
variation between maximum and minimum coefficient values is
reduced as the input nears FS. This is due to the limited diver-
sity of available decision trajectories for larger inputs. As will
be seen in Section IV, the reduced min-to-max variation will re-
duce the value of matrix coefficients used to solve for and

. The dependence of matrix coefficients on signal level is the
reason for the signal-related change in the rate of calibration
convergence for the entire ADC which is seen in Section VI-C.
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Fig. 4. (a) Multiple residue-mode cyclic amplifier. (b) Residue modes and SDK coefficients.

TABLE I
EXAMPLE SDK COEFFICIENT VALUES

C. Modifications Required to Basic

In practice, there are several reasons to consider in modifying
the simple approach embodied in (13).

1) In the presence of offset and scale-factor errors in the
and converters, there will be systematic variations in the

values which are not related to the true values of
and . To separate out these effects requires information
from additional conversions and modification of the matrix
equation, as described in Section IV as follows.

2) In the presence of noise in the and conversions, there
will be additional random noise in the values which are
not related to the true values of and . Therefore, the
results of solving the matrix equation should be considered
as estimates and .

3) To simplify digital hardware, matrix inversion should be
avoided; rather, an iterative matrix approximation proce-
dure is used to develop the estimates and . As will
be described in Section V, the procedure is merged into the
iterative nature of the LMS algorithm described previously
in Section II-C. Dealing with the matrix in this way has two
advantages: The digital complexity of matrix inversion is

avoided, and the effects of random noise are effectively av-
eraged out over the time constant of the LMS adaptation.

IV. OFFSET AND SCALE-FACTOR ERRORS

A. Difficulty Due to Offset and Scale-Factor Errors

The previous analysis ignored offset errors in each of the
and channels, as well as the possibility of a scale-factor

gain error between channels. Intuitively, it can be anticipated
that offset and scale-factor errors pose a challenge for the “split
ADC” calibration procedure: The fundamental principle is that
the difference is zero when both ADCs are correctly cal-
ibrated and that any nonzero is an indication that ADC
linearity needs to be corrected. The problem is that, even if
ADC linearity is correctly calibrated, any mismatch in offset or
scale-factor errors between the ADC channels will give rise to a
nonzero difference , which will corrupt the linearity calibra-
tion procedure. If offset and scale-factor errors are not somehow
taken into account, the ADC will fail to converge to correct
cyclic gain estimates and ; rather, in trying to drive
to zero, the calibration loops incorrectly attempt to compensate
for offset and scale-factor errors by adjusting the cyclic gain es-
timates, which results in ADC nonlinearity.

It must be emphasized that the procedure described in this
paper only makes calibration of ADC linearity insensitive to
the presence of offset and scale-factor errors; absolute offset
and linear scale-factor errors in the ADC output codes are not
removed or corrected. In many applications, absolute accuracy
correction is not necessary; end users can often tolerate offset
and scale-factor errors as long as ADC linearity is maintained.
For applications which require absolute accuracy, additional
analog complexity is in general required, for example, by taking
the ADC offline to apply zero and reference voltage inputs.
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B. Modeling Offset and Scale-Factor Errors

Before considering how offset and scale-factor errors affect
the difference and calibration procedure, we first model
these effects by modifying (10a) and (10b) as follows:

(14a)

(14b)

where , and , represent output-referred offset
and scale-factor errors.

Taking the average of (14a) and (14b) to obtain the overall
ADC output code gives

(15)

Since the we do not need or intend to correct offset and
scale-factor errors in the overall ADC output code, we define
“ ” including the effect of offset and scale-factor
errors

(16)

With this definition and defining mismatch variables

(17)

(18)

It can be shown that, assuming that second-order terms are
negligible, (14a) and (14b) can be expressed as

(19a)

(19b)

Averaging (19a) and (19b) in accordance with (11) gives

(20)

Therefore, if the errors and can be driven sufficiently
close to zero, the overall ADC output code will be the new “cor-
rect” , since the definition of includes the effects of nonzero
offset and scale factor.

When we subtract to get the difference , however, the re-
sult is

(21)

The difference is influenced by the offset and scale-factor
errors and no longer depends only on the estimate errors and

. The effect of the additional and terms, not due to
errors and , must be eliminated to avoid corruption of the
error estimation from .

C. Modifying Estimation Process

If we were able to estimate the gain error and offset error
, then we could correct and as follows:

(22a)

(22b)

where and are the estimated offset and scale-factor errors.
Define errors in these estimates as

(23)

(24)

Taking the difference of (22a) and (22b), in similar fashion to
(12), and substituting (23) and (24) gives

(25)

Note from (16) and (20) that correcting the ADC output code for
linearity does not necessarily require estimation or correction
of the errors and , since the definition of includes the
effects of nonzero offset and scale factor. We only need to make
the estimation of the cyclic gain errors and insensitive to

and . In the procedure described as follows, scale-factor
error is estimated and corrected and driven to zero; offset is
not estimated but the effect of nonzero offset is removed from
the estimation process.

To develop the modified estimation process, consider ex-
panding the set of conversions used in the matrix definition in
(13) to six conversions, using the expression in (25)

(26)

The effect of offsets can be eliminated by using a “difference
of differences” approach, subtracting row 2 from 1, 4 from 3,
and 6 from 5. This cancels a constant offset from the calibration
signal path and eliminates as a variable from the system of
equations. The result is given in (27), shown at the bottom of
the next page.

We now have a 3 3 matrix equation that can, in principle, be
inverted (if the matrix is nonsingular) to solve for , , and .
A potential difficulty is that the matrix is in fact singular in the

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on February 27, 2009 at 15:45 from IEEE Xplore.  Restrictions apply.



300 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 2, FEBRUARY 2009

TABLE II
RESIDUE-MODE CHOICES

case of a dc input; the first column goes to zero. However, this
is not a problem since the singularity obscures only informa-
tion needed to solve for . Given the activity in the and

coefficients enforced by the selection of residue modes,
the remaining columns of the matrix provide sufficient informa-
tion to solve for and .

D. Need for Residue-Mode Selection

It should be noted that, ideally, we would only need four
rows in the matrix (26), given that there are four unknowns. The
residue modes selected for the conversions corresponding to the
extra rows in (26) are selected to ensure good numerical proper-
ties and avoid singularity for the matrix in (27). Table II shows
one possible pattern of residue-mode choices.

Although a full analysis is beyond the scope of this paper,
some insight into the effect of residue-mode variation can be
gained from a qualitative examination of the residue-mode
plots shown in Fig. 4(b). Consider, for example, the choice of
residue modes in conversions 3 and 4: Different residue modes
are used for ADC “A” while the residue mode for ADC “B” is
unchanged. These will affect the values of
and in the second row of the matrix
in (27). To the extent that differs from

, the portion of matrix in (27) needed to
solve for and will be nonsingular.

It can be seen from the plots of the SDK coefficients in
Fig. 4(b) that, for any given code , the value of the SDK
coefficient for the “HIGH” residue mode is greater than
that for the “LOW” residue mode. Thus, it is plausible that

always, even for
dc inputs. Behavioral simulations have indicated that, for a wide
range of input signal conditions (for example, dc, random noise,
and periodic signals at multiples of the conversion frequency),
the activity in matrix coefficients enabled by choosing different
residue modes is sufficient to prevent singularity in the matrix
coefficients corresponding to and .

Note from Table I and from Fig. 4(b) that, in general, signal
levels closer to FS correspond to a reduced min-to-max variation

in SDK coefficients. From (27), it can be seen that this will re-
duce the value of matrix coefficients used to solve for and ,
which increases the condition number [17], [18] of the matrix.
This means that the matrix is closer to the undesirable case of
singularity, which slows the iterative matrix solution algorithm
and will be seen in Section VI-C to slow the rate of calibration
convergence for the entire ADC.

V. ITERATIVE MATRIX SOLUTION

A. Jacobi Iteration Method Review

To simplify the digital hardware, an iterative procedure is
used to avoid matrix inversion. It will be shown that the pro-
cedure used has the additional advantage of dealing gracefully
with matrix singularity. The procedure is based on the Jacobi
iteration method [17], [18], which is now briefly reviewed.

Suppose we are trying to solve a linear system

(28)

in which the are observations of a system (in our case, the
differences), are unknown parameters (the estimate errors)
we are trying to determine based on the observations, and the

are known coefficients in (27) describing how the various
parameters affect the observations .

Expanding the matrix product for the first row gives

(29)

If we already knew and , we could solve for . In the
Jacobi iteration procedure, we develop the next (new) iteration
for using the previous (old) values of and

(30)

Analogous expressions can be derived for and using the
other rows of the matrix. Expressing the iteration in matrix
form gives

(31)

(27)

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on February 27, 2009 at 15:45 from IEEE Xplore.  Restrictions apply.



MCNEILL et al.: DIGITAL BACKGROUND-CALIBRATION ALGORITHM FOR “SPLIT ADC” ARCHITECTURE 301

B. Difficulty With Basic Jacobi Iteration

Considering the iteration in (31), the need for reciprocal ele-
ments is undesirable in this application for (at least) three
reasons.

1) Digital-hardware complexity: To keep the digital hardware
simple, we prefer to avoid division by anything other than
a power of two (note that the multiplications required for
the terms do not impose an additional complexity
burden; the multiplier used for calculating the
LUTs is available as a shared resource).

2) Iteration stability depends on values of : If the original
matrix is dominated by its diagonal elements, the iteration
in (31) is stable and is guaranteed to converge. If this is
not the case, the iteration can be made stable as described
in [18] by scaling the matrices in (31). Although we have
some influence on the through residue-mode selection,
to a large extent, the are signal-dependent, and there
may be some input signals for which the iteration in (31)
is unstable.

3) Numerical sensitivity to values of : For example, from
(30), we see that if is small, the large reciprocal applies
a large “gain” to the term in

an effort to “squeeze” information out of . The
calculation is therefore very sensitive to small errors in the
value of . However, from (29), we see that when is
small, it is very unlikely that there actually is any informa-
tion to be found in regarding . In the worst case of a
singular matrix (for example, first column with a dc
input), the reciprocal of blows up completely. When

is small, we are better off realizing that the equation
has little to tell us about ; it is better off to just ignore the
result and wait until the next set of six conversions. The
desired behavior is similar to that encountered in solving
an overdetermined set of equations with singular-value de-
composition [17], a technique which gracefully handles
poor numerical conditions.

C. Modifications to Jacobi Iteration

The solution proposed in this paper is to adopt an LMS-style
approach in modifying the Jacobi iteration. In the method of
successive over-relaxation (SOR) [18], the new iteration of the

is obtained by combining a weighted sum of the matrix oper-
ation of (31) with the previous iteration, as shown in

(32)

The factor allows tailoring of the dynamics of the iteration.
Exploring further, we expand the matrix product for the first row,
giving

(33)

which still has the problems associated with determining the
. To adopt an LMS-style approach, we will abandon hope

for an exact solution and just use the sign of

(34)

Thus, rather than solve exactly for the using (31),
we just take a small step in the direction indicated by

. The factor
can be chosen small enough to guarantee stable convergence of
the iteration.

When the approach of (34) is applied to the matrix (31), we
have (35), shown at the bottom of the page. For hardware im-
plementation, (35) is rearranged to (36), shown at the bottom of
the page, which is in an LMS form of adding a small update to
the previous iteration result [19]. Applying the approach of (36)
with the data in (27) provides (37), shown at the bottom of the
page, which is used to develop the estimates , , and . In

(35)

(36)

(37)
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Fig. 5. Calibration and conversion flowchart.

accord with the LMS principle, the update approaches zero at
equilibrium when the and are driven to zero.

In the full SOR method, the iteration in (37) could be repeated
until the values converged to a sufficiently accurate so-
lution. However, there is a limited time for iterating (37), since
a new set of coefficients is generated every six conversions. It
might seem that there is a tradeoff in which improving digital
speed and complexity to perform more iterations would speed
the convergence of ADC calibration; however, this is not really
the case. Due to the approximate nature of the high-level LMS
loop, improving accuracy in the values provides little im-
provement in the rate of convergence of system calibration pa-
rameters , , and . Indeed, the advantage of the LMS
technique is that accuracy is unnecessary, since the larger LMS
loop eventually drives , , and to zero.

In the case of [1] and [2], for example, the digital implemen-
tation was simplified by basing the updated values on the
results of only one iteration as carried out in (37). The resulting
estimated values of were carried forward to be used as the
starting point in the iteration corresponding to the next set of
six conversions.

The estimates from (37) can be used in the LMS procedure to
adjust estimates of , , and used in calibration. However,
from (6), we see that only the reciprocals of and are
needed for calculating the decision-weight LUT, so we store an
estimate of the reciprocal. Since our error estimates and
are in terms of the gain, but we are updating the gain reciprocals,
the sign of the LMS updating must be inverted to keep maintain
negative feedback in the LMS procedure loop

(38a)

(38b)

(38c)

Correction for gain error requires modifying (9a) and (9b);
this correction is easily incorporated into calculation of the de-
cision-weight LUTs as follows:

(39)

D. Summary of Estimation and Calibration Algorithm

A flowchart of the entire calibration procedure is shown in
Fig. 5, with shaded boxes indicating the calculations imple-
mented and relevant equation numbers. The figure is partitioned
into those calculations which occur every conversion (right side)
and those which occur in updating calibration parameters every
set of six conversion (left side).

Beginning at the top right of Fig. 5, the input is sampled,
and residue cycles are completed by each of the and
ADCs. Comparator decision sequences and are pro-
duced in accordance with (6). Over each set of six conversions,
the residue modes are varied according to the pattern described
in Table II. From the decisions, radix correction is implemented
using the updated decision-weight LUTs according to (39) to
produce the individual ADC codes and for each side of
the split ADC. The codes are averaged according to (11) to pro-
duce the overall ADC output code .

For error-estimation and calibration purposes, the individual
ADC codes and are also used to calculate the differ-
ence according to (12). The error-estimation process also
requires error coefficients and , which are calcu-
lated from the and decisions and the fixed error-co-
efficient-weight LUT according to (10). The output code is
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TABLE III
SYSTEM BEHAVIORAL SIMULATION PARAMETERS

also used in assembling the error-estimation matrix as defined
by (27).

The state estimates of the errors , , and are updated
using the estimation matrix in accordance with the LMS pro-
cedure defined by (37), with the dynamics of the LMS ma-
trix iteration determined by coefficient . The estimated er-
rors are in turn used to update the scale-factor error-estimate

and the reciprocals of the gain estimates and in accordance
with the LMS procedure defined by (38), with the dynamics of
the LMS approximation determined by coefficient . Finally,
the decision-weight LUTs are updated by recalculating the de-
cision weights as powers of the gain reciprocal in accordance
with (39). The calibration procedure operates in the background,
periodically updating the decision-weight LUTs, and is trans-
parent to the foreground operation of the converter.

VI. RESULTS

Experimental results for an integrated circuit implementing
the procedure described earlier were presented in [1] and [2].
With LMS adaptation factors of and ,
successful self-calibration was demonstrated in approximately
10 000 conversions. In this section, simulation results are pre-
sented exploring the choice of and , as well as other as-
pects of the estimation and calibration procedures.

The ADC was simulated in behavioral fashion using
MATLAB, with the code roughly configured as the system
block diagram shown in Fig. 3, implementing the algorithm of
Fig. 5. Parameters were included for describing analog block
nonidealities such as finite op-amp gain, offset, noise, and non-
linearity. Unless otherwise indicated, system parameters were
as shown in Table III. In [1] and [2], a cyclic gain of
was used, which according to (6) would require 18 cycles to
achieve 16-bit resolution. In the actual implementation, two
extra cycles were added for a total of to reduce the
impact of quantization error on the estimation process.

A. DNL and INL Improvement With Calibration

Fig. 6(a) and (b) show plots of DNL and INL (in LSB) before
and after calibration. Once the LMS calibration loop has adapted
and converged to its steady state, the simulated linearity is better
than LSB. These results show that improvement is similar
to the results presented in [1] and [2], thus showing good corre-
spondence between the behavioral simulation approach and the
measured performance from the fabricated prototype IC.

Fig. 6. (a) DNL and INL before calibration. (b) DNL and INL after calibration.

B. Frequency-Domain Performance

A modification that was necessary for the IC implementation
described in [1] and [2] is related to the sequencing of residue
modes shown in Table II. Nonidealities such as gain nonlin-
earity in the cyclic amplifier can lead to small differences (of
order ) in the optimal gain estimate corresponding
to each residue mode. Since the converters cycle through dif-
ferent residue modes, these differences average out and do not
affect DC plots of DNL or INL. However, there is a problem
if frequency-domain performance is evaluated with a periodic
input: The same pattern of residue modes is constantly repeated,
and the error pattern reinforces to produce spurs in a magnitude
spectrum plot. This is shown in Fig. 7(a). The problem is solved
by shuffling the sequence of residue modes in pseudorandom
fashion, which breaks up any pattern of reinforcement. The spur
energy is spread and disappears under the noise floor, as shown
in Fig. 7(b).

C. Adaptation For Various Input Signals

Convergence speed is affected by two factors: the nature of
the input signal and the choice of LMS parameters. Input signal
effects are explored in this section; the effects of LMS parameter
choices are covered in the following section.

As described previously in Section III-B, a “busy” input is not
required for calibration. As described in Section IV-D, however,
the coefficients of the estimation matrix in (27) and (37) are af-
fected by the input signal. The dynamics of the matrix iteration
in turn depend on the matrix coefficients [18], so we expect to
see some variation in convergence speed for different input sig-
nals. Fig. 8 shows a plot of ADC error in dB relative to full scale
(dBFS) as a function of conversion for different input signals.
For the random input, calibration is achieved to noise-limited
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(a)

(b)

Fig. 7. Spectrum of ADC output, residue modes ordered versus shuffled. (a)
Ordered. (b) Shuffled.

performance within 10 000 conversions; approximately 20 000
conversions are necessary with a 0.9-FS sine-wave input.

Fig. 9 shows a plot of the error in the and gain es-
timates as a function of time (in conversions) for various input
signals. As shown in the figure, the time constant of the adapta-
tion convergence depends somewhat on the nature of the input
signal. Since a diversity of decision paths are allowed with re-
dundancy and the multiple residue-mode approach, calibration
information can be extracted even for a dc input; even, for ex-
ample, in the case of a dc input at 0.9-FS calibration eventually
does converges although more slowly than for a zero dc input.
As the input nears FS, the decision sequences are more sim-

Fig. 8. ADC error convergence for sine and random inputs.

Fig. 9. Coefficient convergence for different input signals.

ilar and the resulting SDK coefficients become closer in value,
which can be seen qualitatively from the SDK coefficient plots
shown in Fig. 4(b) and numerically from the example SDK co-
efficients in Table I as described in Section IV-D. Indeed, as
described in [2], the only input pattern that presents a patholog-
ical difficulty is a dc input —FS, which, despite redun-
dancy, requires a nearly identical sequence of decisions regard-
less of the residue mode. As can be seen from (27), if all pairs
of SDK coefficients are identical, then the entire matrix is zero
and the differences provide no visibility whatsoever to er-
rors. Although calibration cannot proceed reliably during this
input condition of a dc input —FS, the condition can be
identified and calibration suspended to avoid corruption of cal-
ibration parameters.

D. LMS Parameter Selection

Fig. 10 shows a plot of error in the and gain esti-
mates versus conversion for selected values of the LMS param-
eters and . In addition, shown for each set of values is the
associated steady-state rms variation in the and esti-
mates after convergence. Results show the expected tradeoff in
an LMS system between convergence and sensitivity to noise:
Larger corresponds to faster convergence but more sensitivity
to parameter variation from noise. Noise in each of the and
ADCs causes a difference which is unrelated to calibration
errors; since this contribution varies randomly on a conver-
sion-to-conversion basis, its effect is reduced by the LMS loop,
which effectively averages over the time constant of the adapta-
tion process. For the prototype system in [1] and [2], values of

and were chosen as a compromise.
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Fig. 10. Convergence of gain estimate versus � coefficients.

Fig. 11. Convergence of gain estimate versus � and � coefficients.

The block diagram shown in Fig. 5 shows that the series con-
nection of the and LMS loops effectively makes the en-
tire calibration loop analogous to a second-order system, which
is prone to instability if the time-constants and LMS parame-
ters of the and loops are chosen inappropriately. Fig. 11
shows a plot of gain estimation error as a function of conver-
sion for different values of with fixed at . If is not
chosen to be at least 16 greater than , the adaptation tran-
sient exhibits overshoot and oscillatory behavior.

Other techniques from adaptive and nonlinear filtering were
considered. Estimates of the errors , , and are most prone
to noise, since they are derived from a small set of conversions
and filtered with a shorter time constant, since . Non-
linear techniques of noise-reduction, such as median filtering
and limiting, were examined but showed no significant improve-
ment in performance in this application. To break the conver-
gence versus accuracy tradeoff, it is possible to change the LMS
parameters and as a function of error: Large when error
is large for fast convergence; changing to smaller when error
is small for better accuracy once convergence is achieved. Al-
though these techniques ultimately were not necessary in the
work presented in this paper, they may prove useful in future
work with self-calibrating ADCs.

VII. CONCLUSION

An algorithm has been presented for the “split ADC” archi-
tecture, which is tolerant of offset and scale-factor errors, has an
efficient digital implementation, and enables continuous digital
background calibration for high-resolution ADCs. Unlike statis-
tical techniques which require long decorrelation times to sepa-

rate calibration information from the input signal, the split ADC
approach uses the difference of ADC output codes to cancel
the unknown input and rapidly extract calibration information.
In this paper, the split ADC concept is realized in an algo-
rithmic converter; it is anticipated that future work will demon-
strate applicability in other ADC architectures such as succes-
sive approximation, pipelined, and interleaved ADCs. For the
specific realization presented of a 16-bit 1-MS/s algorithmic
ADC, self-calibration in approximately 10 000 conversions is
demonstrated. It is anticipated that future work will demonstrate
applicability in other ADC architectures such as successive ap-
proximation, pipelined, and interleaved ADCs.
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