
A SOFTWARE-DEFINED RADIO IMPLEMENTATION OF
TIMESTAMP-FREE NETWORK SYNCHRONIZATION

Mitchell W.S. Overdick? Joseph E. Canfield? Andrew G. Klein? D. Richard Brown III†

? Western Washington University † Worcester Polytechnic Institute
Department of Engineering and Design Department of Electrical and Computer Engineering
516 High St, Bellingham, WA 98225 100 Institute Rd, Worcester, MA 01609
{overdim, canfiej2, andy.klein}@wwu.edu drb@wpi.edu

ABSTRACT

This paper describes a real-time implementation of timestamp-free
network synchronization using RF signaling between a master and
slave node. Rather than conventional approaches of exchanging
digital timestamps through a dedicated synchronization protocol,
timestamp-free synchronization is performed implicitly at the physi-
cal layer through timing of a master node’s responses to a slave node.
This approach was implemented in C++ on a pair of Ettus USRP
E310 software defined radios, and extends a previous implemen-
tation at audio frequencies using acoustic hardware. Experimental
results using modulated sinc pulses demonstrate synchronization
accuracy less than 12% of the sampling period. The results confirm
previous theoretical studies suggesting that the timestamp-free syn-
chronization approach accurately accounts for propagation delay,
frequency offset, and stochastic drift.

Index Terms— synchronization, oscillator dynamics, real-time
signal processing, software-defined radio (SDR), Universal Software
Radio Peripheral (USRP)

1. INTRODUCTION

Synchronization is necessary in communication networks to enable
coordination among nodes, scheduling of communication resources,
interference avoidance, event detection/ordering, data fusion, and
coordinated wake/sleep cycles. Most synchronization approaches
(e.g., [1–3]) employ application-layer or MAC-layer exchanges of
digital timestamps, which inherently require a significant amount of
overhead to be able to resolve sufficiently small time increments.
Recently, a bidirectional timestamp-free synchronization approach
was proposed in [4], which conveys implicit timing information
in the physical layer through the timing of the responses between
nodes. This approach was shown to be attractive because the syn-
chronization functions can be embedded in existing network traffic,
the scheme accounts for propagation delay, and there is no need for
exchanging digital timestamps.

This paper describes a real-time implementation and experimen-
tal results for the bidirectional timestamp-free synchronization pro-
tocol using Ettus USRP software defined radios. This work builds
upon the original protocol described in [4] and illustrated in Fig. 1.
Previously, this protocol was implemented using acoustic hardware
on the Texas Instruments TMS320C6713 DSK platform, the results
of which are described in [5]; this work expands on the prior exper-

This work was supported by a Research Experience for Undergraduates
(REU) Supplement to National Science Foundation award CCF-1319458.

t
(a)
s

t
(b)

t
(c)

t
(d)
s

t
(a)
s

+t
(d)
s

2

ts = t+∆s[k]

t

δ̂s

Fig. 1. Timestamp-free synchronization bidirectional signal ex-
change.

imental study by implementing the synchronization approach at ra-
dio frequencies using software-defined radios. Besides the obvious
differences in testbed (Ettus USRP vs. TI DSK) and transmission
medium (RF vs. acoustic), the use of high RF carrier frequencies re-
quired an implementation employing analog downconversion prior
to sampling; thus, as opposed to the previous fully digital acous-
tic implementation [5], this RF implementation was required to be
designed to operate on baseband as opposed to passband signals. Fi-
nally, this work demonstrates the feasibility of the timestamp-free
synchronization algorithm for use in modern wireless networks.

2. TIMESTAMP-FREE SYNCHRONIZATION PROTOCOL

Figure 1 shows the interactions between a slave node and the master
node using the timestamp-free synchronization protocol. The time-
varying clock offset at the slave node with respect to the master node
is denoted as ∆n[k] and local time at the slave node is denoted as

tn = t+ ∆n[k]

where t is the reference time corresponding to the local clock at the
master node. The timestamp-free synchronization protocol begins
with the slave node transmitting a signal to the master node at arbi-
trary local time t(a)

n . The signal arrives at the master node at local
time

t(b) = t(a)
n −∆n[k] + τn

where ∆n[k] is the current clock offset of the slave node with respect
to the master node and τn is the propagation delay between the slave



node and the master node. The master node then transmits a signal
back to the slave node at time t(c) where t(c) is selected such that

t(b) + t(c)

2
(mod T0) = 0 (1)

where T0 is master node clock tick period. Note that, unlike the usual
sender/receiver synchronization protocol, e.g. [6], no timestamps are
exchanged between the nodes. Implicit timing information is embed-
ded in the master node’s response to the slave node by selecting t(c)

so that a local clock tick the master node is centered between t(b)

and t(c). Assuming a reciprocal channel, the slave node receives the
reply signal from the master node at local time

t(d)n = t(c) + ∆n[k] + τn.

The slave node can now estimate its clock tick offset with respect to
the master node by calculating

δ̂n =

(
t(a)
n + t(d)n

2

)
T0

(2)

where the notation (z)T0 corresponds to wrapping z to the interval
[−T0/2, T0/2). The offset estimate in (2) can be used directly for
immediate clock offset correction at the slave node or as an input to
a filtering algorithm to correct both clock offsets and drifts.

This timestamp-free synchronization technique inherently ac-
counts for propagation delay, and its accuracy is only limited by
the fundamental bounds of delay estimation and the accuracy of
the channel reciprocity assumption. In the related work that im-
plemented the timestamp-free approach at acoustic frequencies [5],
passband sampling was used due to the low rate of acoustic frequen-
cies relative to modern A/D converter speeds. At RF frequencies,
however, sampling rates are generally much lower than the carrier
frequency, so that analog downconversion must be performed prior
to sampling; in this case, delay estimation must generally be per-
formed on baseband signals, and it is well-known that the inherent
phase ambiguity limits the accuracy of delay estimation performed
on baseband signals relative to passband signals [7, 8]. The max-
imum likelihood delay estimator is non-coherent in the sense that
it ignores phase when processing the baseband waveform, and with
sufficient signal to noise ratio (SNR) the Cramer-Rao lower bound
for delay estimation can be written as [7, 8]

var(τ̂) ≥ 24π

W 3T · SNR
(3)

where W and T are the signal bandwidth and integration time, re-
spectively, and SNR is the pre-integration SNR at the receiver.

3. DELAY ESTIMATOR

A fundamental building block of the timestamp-free synchroniza-
tion protocol is accurate delay estimation. This section provides an
overview of the delay estimator used in our real-time implementation
of the timestamp-free synchronization protocol.

We assume the signals exchanged between the nodes are mod-
ulated sinc pulses. To avoid LO leakage during down conversion,
we employ a “low IF” scheme where the sinc pulses in the complex
baseband are frequency-shifted by a frequency Ω0. The complex
baseband modulated sinc pulse received by a node with unknown
delay τ ∈ R can be expressed as

rτ [k] = ejω0(k−τ)sinc(η(k − τ))

for k = 0, . . . ,K−1 where ω0 = Ω0
fs

is the normalized intermediate
frequency and η = W

fs
is the normalized bandwidth of the sinc pulse.

Cross-correlation with the template waveform r0[k] can be used to
generate a nearest-sample delay estimate k0 ∈ Z.

To refine the estimate, we employ quadratic interpolation [9] by
fitting a parabola to the cross-correlation peak and its two adjacent
samples. We define c[k] as the discrete-time cross-correlation be-
tween the template waveform r0[k] and the received pulse with un-
known delay rτ [k], so c[k0] is the cross-correlation peak. Then, the
refined delay estimate can be computed as

τ̂ = k0 +
1

2

c[k0 − 1]− c[k0 + 1]

c[k0 − 1]− 2c[k0] + c[k0 + 1]
.

4. REAL-TIME IMPLEMENTATION

Three E310s were used in the implementation: one as the master
node, a second as the slave node, and a third as the measurement
device for determining the resulting clock offset. The E310s include
an AD9361 2x2 RF Agile Transceiver, tunable from 70 MHz to 6.0
GHz. Each of the node’s software was implemented in C++ using
the USRP Hardware Driver (UHD) provided by Ettus. The driver is
configured to transmit and receive buffers of 1000 samples at a time.

Fig. 2. Block diagram of the connections between the E310s used
for the master and slave nodes. Each E310 has an independent local
oscillator.

The test setup is shown in Fig. 2. The E310s have two subde-
vices “A” and “B” where each subdevice has one TX/RX channel
(labeled TRX on the device) and one RX channel (labeled RX2 on
the device). On both the master and slave node, subdevice A is used
for the synchronization protocol and subdevice B is used to trans-
mit clock signals. The slave node transmits a modulated sinc pulse
on TRX-A and listens for a response on RX2-A. The master node
listens for a pulse from the slave on RX2-A; when one is detected,
it transmits a time-reversed recording of the received signal after a
specified delay. For this implementation, the pulses were transmitted
with a carrier frequency of 900 MHz and a sampling rate of 150 kHz.



While a higher sampling rate would have been preferable, the com-
putational power of the ARM Cortex A9 on the Ettus E310 limited
the number of clock cycles available for such operations as correla-
tion, and 150 kHz was the highest sampling rate that did not result
in buffer under/over-runs due to excessive processing time.

A state-diagram of the master node is shown in Fig. 3. Subde-
vice A facilitates all communication to and from the slave node and
subdevice B simply facilitates the clock output. Both devices are
controlled synchronously within the software, but are displayed on
the diagram asynchronously for simplicity. On subdevice A, cross-
correlation is used to detect the presence of a pulse. When the magni-
tude of the cross-correlation breaks a predefined threshold, the mas-
ter node schedules the time reversed transmission of the received
waveform to the slave node. The transmitter is set to a constant delay
to allow for the buffers to be queued. The delay is used to guarantee
to the slave node the presence of a clock tick at the half-way point
between transmitting and receiving.

pulse

wait one
bu�er

Fig. 3. Flow diagram of master node operation.

A state-diagram of the slave node is shown in Fig. 4. As with the
master node, subdevice A facilitates all communication to and from
the master node and subdevice B simply facilitates the synchronized
clock output. Because the slave node is adjusting its clock based
on the master’s timed response, the implementation complexity of
the slave node is significantly higher. When searching, the slave

pulse

detected?

�lter

n bu!ers?

no

no

transmit pulse

to master

adjust clock

pulse

wait one bu!er

pulse
output clock

update

Fig. 4. Flow diagram of slave node operation.

node performs cross-correlation on every receive buffer in order to
locate the precise sample that received the peak of the sinc pulse. As
with the master, the slave node computes the magnitude of the cross-
correlation when searching for a pulse, to allow the threshold to be

well out of the noise margin. When the detection threshold is broken
and a pulse is detected, the slave node sets a flag for calculation,
saves the position of the peak, and saves the three points about the
peak of the normalized cross-correlation. The slave node initiates
the synchronization between the two nodes by transmitting a pulse
every n buffers. The n-buffer delay is computed depending on the
propagation between the master and slave nodes to ensure that the
response from the master node is received before initiating another
synchronization.

When the code enters the calculation block, the three points
saved from the searching block are input to the quadratic interpola-
tor. The result of the interpolator is used to calculate a prediction of
the master node’s clock using a two-state Kalman filter. The Kalman
filter smooths and tracks the master node’s relative rate and time with
respect to the slave node. Using these rate and time estimates, the
Kalman filter generates an improved prediction of when future mas-
ter node clock pulses will occur. The filter output is used to generate
a new, delayed sinc pulse that is transmitted on subdevice B. The
fractional sinc pulse delay is adjusted before each transmission to
compensate for the slight difference in clock rate of the master node
and slave node.

5. EXPERIMENTAL RESULTS

This section summarizes our experimental results in a high-SNR
over-the-wire setting. Modulated sinc pulses were transmitted from
the slave with a period of 153.3 ms. The master node and slave node
clocks were both recorded with a third E310 labeled “Measurement
Device” as shown in Fig. 2.

8200 8400 8600 8800 9000 9200 9400 9600 9800 10000 10200

Samples

-2500

-2000

-1500

-1000

-500

0

500

1000

A
m

p
lit

u
d
e

Real Captured Pulses From Master and Slave

Slave Node

Master Node

Fig. 5. Example excerpt recording of synchronized USRP clocks,
sampled at 3 MHz.

The E310 used for measurement recorded the two clocks for 30s
and saved the recordings to a file. The file was then transferred to a
host PC for analysis in MATLAB. The accuracy of the “Measurement
Device” was determined by sending pulses of known offset from one
E310 to receiver-configured TRX channels on another E310. To in-
crease the resolution of the measurement device the receiver was set
to sample at 3 MHz, and all processing was performed offline. The
E310 serving as the measurement device recorded each TRX chan-



nel and the time difference between the pulses was calculated using
MATLAB and compared with the intended known offset. We found
that the standard deviation of this test was approximately 32 ns. This
precision is one of the limiting factors in our experimentation, as the
E310 could not reliably measure an offset of less than 32 ns for our
chosen pulse, sampling rate, and carrier rate.

Figure 5 shows a 354 µs recording of the real components of
the fixed master node clock (shown in blue) and the adjusted slave
node clock (shown in red). The master and slave node clocks were
implemented with the same modulated sinc pulse as in the synchro-
nization routine for simplicity. The clocks were set to occur every
6.67 ms, the duration of one buffer’s worth of transmission.

To determine the effectiveness of the synchronization protocol,
we ran 3 sets of tests. For each test, every combination of E310 was
tested, each labeled A, B, or C. The M/S column of Tables 1, 2, and 3
indicates which E310 was used for the master and slave nodes, with
the unlisted E310 used as the recording device.

The first test determined the Kalman Filter’s (KF) precision and
accuracy for predicting future samples. We allowed the Master and
Slave nodes to synchronize for several minutes to ensure the KF had
converged to steady values, using the last five minutes for recording
and analysis. Table 1 shows the mean and standard deviation of the
KF’s prediction error, and the oscillator drift estimate measured in
parts per million.

M/S Run mean[ỹ[k]] std[ỹ[k]] Drift Estim.
A/B 1 -0.1595 µs 0.1296 µs +0.4124 ppm
A/B 2 0.1556 µs 0.2401 µs +0.2529 ppm
B/A 1 0.1555 µs 0.1931 µs -0.3805 ppm
B/A 2 0.0668 µs 0.1316 µs -0.3753 ppm
A/C 1 -0.4451 µs 0.1519 µs +2.0829 ppm
A/C 2 -0.1879 µs 0.2061 µs +2.0054 ppm
C/A 1 0.2485 µs 0.1484 µs -2.0171 ppm
C/A 2 0.1610 µs 0.1485 µs -2.0054 ppm
B/C 1 -0.3019 µs 0.1336 µs +1.6056 ppm
B/C 2 -0.4883 µs 0.1526 µs +1.6388 ppm
C/B 1 0.4540 µs 0.1556 µs -1.6347 ppm
C/B 2 0.0222 µs 0.1378 µs -1.6113 ppm

Table 1. Summary of Kalman filter prediction error and drift esti-
mates

The second test let the master and slave synchronize until KF
convergence, and recorded the last 30s of clock pulses to analyze the
offset between clocks. Each combination of E310’s had a fixed bias
and converged to a value not equal to zero. The data without bias
calibration is shown in Table 2.

The third test was conducted identically to the previous test as
presented in Table 2, however the average of the mean offsets from
the two runs of each test was used to calibrate the offset towards
zero. The calibrated data is shown in Table 3. Runs 1 and 2 often
have significantly different mean offsets, which we conjecture is due
to the temperature difference between runs 1 and 2; in run 1, the
E310’s were started cold, though in run 2 the E310’s started warm
from run 1.

With the one round of calibration we were able to achieve an ac-
curacy within±0.8 µs. At our relative low sampling rate of 150 kHz
– necessary to allow sufficient time for computation within the E310
software-defined radio – we note that the synchronization accuracy is
within 12% of the sampling period, and higher sampling rates would
yield much better synchronization accuracy.

M/S Run mean[ε[k]] std[ε[k]]
A/B 1 -3.2789 µs 0.1047 µs
A/B 2 -3.3084 µs 0.0685 µs
B/A 1 -3.4708 µs 0.0717 µs
B/A 2 -3.4288 µs 0.0499 µs
A/C 1 3.6044 µs 0.1343 µs
A/C 2 3.5940 µs 0.0923 µs
C/A 1 3.2397 µs 0.0394 µs
C/A 2 3.3967 µs 0.0218 µs
B/C 1 3.3682 µs 0.0238 µs
B/C 2 3.3499 µs 0.0209 µs
C/B 1 3.2833 µs 0.0203 µs
C/B 2 3.3145 µs 0.0236 µs

Table 2. Mean and standard deviation of uncalibrated clock offsets

M/S Run mean[ε[k]] std[ε[k]]
A/B 1 -0.2445 µs 0.0404 µs
A/B 2 0.0661 µs 0.0671 µs
B/A 1 0.3143 µs 0.0214 µs
B/A 2 0.0212 µs 0.0251 µs
A/C 1 -0.7754 µs 0.0197 µs
A/C 2 -0.6381 µs 0.0355 µs
C/A 1 0.3947 µs 0.0203 µs
C/A 2 0.2167 µs 0.0191 µs
B/C 1 -0.4351 µs 0.0236 µs
B/C 2 -0.4185 µs 0.0258 µs
C/B 1 0.6130 µs 0.0222 µs
C/B 2 0.0439 µs 0.0203 µs

Table 3. Mean and standard deviation of calibrated clock offsets

6. CONCLUSION

This work demonstrates the feasibility of the timestamp-free syn-
chronization algorithm for use in modern wireless networks. We pre-
sented a real-time implementation of timestamp-free synchroniza-
tion using RF signaling and an Ettus USRP software-defined radio
platform. Experimental results demonstrated that the slave node is
able to predict the clock pulse observations from the master node to
within 12% of the sampling period over 0.153s prediction intervals.

Source code for this experiment is available from:
https://github.com/agklein1/tsfreesync.git

7. REFERENCES

[1] D.L. Mills, “Internet time synchronization: the network time
protocol,” IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–
1493, Oct. 1991.

[2] “IEEE 1588 Home Page,” http://www.ieee1588.com/.

[3] W. Lewandowski, J. Azoubib, and W.J. Klepczynski, “GPS:
primary tool for time transfer,” Proceedings of the IEEE, vol.
87, no. 1, pp. 163–172, Jan 1999.

[4] D.R. Brown III and A.G. Klein, “Precise timestamp-free net-
work synchronization,” in Conf. Inf. Sciences and Systems
(CISS2013), Mar. 2013.

[5] M. Li, S. Gvozdenovic, A. Ryan, R. David, D. R. Brown, and
A. G. Klein, “A real-time implementation of precise timestamp-
free network synchronization,” in 2015 49th Asilomar Confer-



ence on Signals, Systems and Computers, Nov 2015, pp. 1214–
1218.

[6] S. Ganeriwal, R. Kumar, and M.B. Srivastava, “Timing-sync
protocol for sensor networks,” in Proceedings ACM SenSys
2003. ACM New York, NY, USA, Nov. 2003, pp. 138–149.

[7] A. Weiss and E. Weinstein, “Fundamental limitations in passive
time delay estimation–Part I: Narrow-band systems,” Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 31,
no. 2, pp. 472 – 486, April 1983.

[8] E. Weinstein and A. Weiss, “Fundamental limitations in passive
time-delay estimation–Part II: Wide-band systems,” Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 32,
no. 5, pp. 1064 – 1078, October 1984.

[9] Giovanni Jacovitti and Gaetano Scarano, “Discrete time tech-
niques for time delay estimation,” IEEE Transactions on Signal
Processing, vol. 41, no. 2, pp. 525–533, 1993.


