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Adaptive Whitening in Electromyogram Amplitude
Estimation for Epoch-Based Applications

Punit Prakash, Christian A. Salini, John A. Tranquilli,
Donald R. Brown, and Edward A. Clancy*

Abstract—Epoch-based electromyogram (EMG) amplitude estimates
have not incorporated signal whitening, even though whitening has
demonstrated significant improvements for stream-based estimates.
This paper presents new epoch-based algorithms, for both single- and
multiple-channel EMG, which include a whitening stage. The best mul-
tiple-channel whitening processor provided a 21.4%–22.5% improvement
over single-channel unwhitened estimation in an EMG-to-torque applica-
tion.

Index Terms—Biomedical signal processing, electromyography, EMG
amplitude estimation, functional electrical stimulation, myoelectric signal
processing, whitening.

I. INTRODUCTION

Estimates of the surface electromyogram (EMG) amplitude are used
in a variety of applications, including: control inputs to myoelectric
prostheses [1], assessments of muscular effort [2], [3], gait analysis
and motion control studies [4], and control signals for functional elec-
trical stimulation (FES) [5], [6]. Improved EMG amplitude estimation
techniques should be of value to each of these applications. To this end,
multiple-channel EMG measurements [7] and whitening of the EMG
signal have been shown to improve amplitude estimation [7]–[10]. The
uncorrelated information from multiple EMG channels located over
one muscle add to the number of degrees of freedom in the EMG,
thereby decreasing the variance of the amplitude estimate. Similarly,
whitening orthogonalizes the EMG samples (in time), increasing the
statistical bandwidth of the data to compensate for the inherently lim-
ited bandwidth of EMG. The whitened EMG again have more degrees
of freedom, and therefore reduce the variance of the amplitude esti-
mate. Recently, Clancy and Farry [8] implemented a digital adaptive
whitening process that cascades a fixed whitening filter, an adaptive
Wiener filter and an adaptive gain corrector. The adaptive filter/gain
corrector attenuates the additive measurement noise, since noise has
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a disruptive effect on the overall whitener at low levels of EMG am-
plitude. A first-pass unwhitened amplitude estimate controls the shape
of the adaptive filters, based on calibration measurements of the EMG
and additive noise power spectra. This technique reduced the error in
an EMG tracking task from 9.62% MVE (maximum voluntary EMG)
to approximately 6.9% MVE [8].

Whilepriorwhiteningalgorithmsweredesignedforuseoncontinuous
streams of EMG data, some applications (e.g., FES) segment data into
independent (oftennoncontiguous)epochswithonlyoneamplitudeesti-
matemade per epoch. For FES in particular, the epochs contain between
13and63msof data [5], [6].Applying existing stream-based algorithms
in these situations is not possible since the length of the digital filters’
startup transients can exceed the duration of the epoch. Since the startup
transient is discarded before analysis, little or no usable EMG data re-
main to form an amplitude estimate. St-Amant et al. [11] showed that
using longer segments of EMG data improved the signal to noise ratio
of the resulting amplitude estimates. Hence, new adaptive whitening al-
gorithms are required to reduce the startup transient if whitening is to
improve amplitude estimation in epoch-based applications.

This paper presents an epoch-based algorithm forwhitening theEMG
signal for use in single- and multiple-channel amplitude estimation. It
specifically addresses the issues regarding filter startup transients men-
tioned above. A method for assessing the performance of EMG ampli-
tude estimates using an EMG amplitude-to-torque (EMGamp-torque)
model is presented. Finally, the performance of the algorithms is com-
pared with existing techniques using experimental data.

II. METHODOLOGY

A. Design of Epoch-Based EMG Amplitude Estimator

The epoch-based EMG amplitude estimation algorithm followed
the sequential six stage process of [12]: high-pass filtering, adaptive
whitening, multiple-channel combination, detection, smoothing, and
relinearization. Mathematical details of the noise rejection and adap-
tive whitening stages are provided in Fig. 1 and [8]. These stages are
designed from two calibration contractions, one at 0% MVC and one
at 50% MVC. The last four stages of the epoch-based algorithm are
identical to those of the stream-based algorithm in [8], except that the
window length is the entire epoch and only one amplitude estimate is
produced per epoch.

In the stream-based algorithm [8], the shape of the adaptive Wiener
filter, within the adaptive whitening stage, is updated each sample.
For epoch-based implementations, this filter is only adapted once per
epoch. Thus, all three filters in this stage and the initial noise rejec-
tion filter are linear time invariant within one epoch. They could there-
fore be combined for epoch-based analysis. This combined noise re-
jection/whitening filter was implemented as a finite impulse response
filter.

The stream-based algorithm’s adaptive whitening filter in [8] was
not computed using an optimal filter-design technique (the filter order
was set to 60, since performance did not appreciably increase past
this order) and was not intended for use with short epochs of data. In
general, higher order filters better fit the desired frequency response.
For stream-based whitening, this relationship translates to improved
whitening of the signal as filter order increases, which in turn yields
improved amplitude estimates.However, longer filters are associated
with longer startup transients, thereby reducing the amount of usable
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Fig. 1. Noise rejection and adaptive whitening stages. Surface EMG m (i is the discrete-time index) is modeled as the EMG amplitude s multiplied by a
unit-variance random process n , plus an additive random measurement noise v , plus cable and motion artifact a . The random noise and process are zero-mean,
band limited, wide sense stationary, correlation-ergodic and mutually independent. The high-pass filter stage removes the cable and motion artifact. The fixed
whitening filter H (e ) produces a whitened EMG signal s n̂ , plus an altered additive noise v̂ � Ŝ (e ) is the power spectral density (PSD) estimate of
the additive noise (computed from a 0% MVC calibration contraction), Ŝ (e ; s ) is the PSD estimate of the surface EMG (computed from a 50% MVC
calibration contraction), and s is a scaling coefficient typically normalized to 0.5 (corresponding to the 50%MVC calibration contraction). The adaptiveWiener
filter H (e ; ŝ ) then makes the optimum linear least squares estimate of the noise/artifact free whitened EMG based on first-pass unwhitened amplitude
estimate ŝ . Ŝ (e ) is the PSD estimate of the additive noise after it passes through H (e ). Lastly, the adaptive gain correction d(ŝ ) scales the signal
to maintain, on average, the variance of the signal through the system. Gain factor d(ŝ ) is also a function of ŝ and the calibration contractions, as given in [8].

EMG data for epoch-based algorithms. With short epochs, these
two competing factors form a tradeoff between shape of the filter
and length of the usable data segment. The epoch-based algorithms
presented in this paper use a least-squares filter design method (see
[13] and MATLAB function “firls”) to optimize the filter coefficients
so that the optimal filter order is reduced. Coefficients are selected to
minimize the mean squared error between the desired and achieved
filter magnitude response. For many filter shapes, this technique char-
acteristically produces a filter that more closely follows the desired
magnitude response with fewer filter coefficients than the window
filter design method. If more of the epoch is usable for amplitude
estimation, more accurate estimates should result. For completeness,
epoch-based adaptive whitening algorithms implemented using the
window filter design method [13], which was used in the stream-based
adaptive whitening algorithms [8], were also studied (see [14] for
a full description). Since these algorithms produced poorer results
overall, no quantitative results from this method will be presented.

B. Experimental Data

The data used for this project were collected previously from fif-
teen subjects. Full experimental details are available in [8]. Briefly,
four channels of EMG were measured from both the biceps and tri-
ceps muscles. In addition, the torque about the elbow joint was mea-
sured using a dynamometer. Subjects produced constant-posture, non-
fatiguing contractions about the elbow while tracking a random target
between 50% maximum voluntary contraction (MVC) extension and
50% MVC flexion. The tests were divided into two groups, the first
of which limited the tracking target’s bandwidth to 1 Hz, while the
second limited the bandwidth to 0.25 Hz. Data were recorded at a sam-
pling frequency of 4096 Hz and 20 seconds of each dataset were used
in analysis. For each subject there were three sets of data recordings,
each consisting of five recordings per tracking speed. Calibration con-
tractions at 0% and 50% MVC were also recorded.

C. Experimental Methods

For each EMG recording, one amplitude estimate per epoch
was computed for every combination of the following testing pa-
rameters: EMG amplitude estimation technique (single-channel
unwhitened, single-channel whitened, multiple-channel unwhitened,
multiple-channel whitened), combined noise rejection/whitening filter

order (6–60 in multiples of 6), and epoch duration (33, 42, and 80
ms, corresponding to FES stimulation rates of 30, 24, and 12.5 Hz,
respectively). Multiple-channel processing used all four EMG channel
recordings per muscle group. The multiple channels on one muscle
were sufficiently uncorrelated spatially, that they only needed to be
gain normalized prior to multiple-channel combination (c.f., [12]).
One centrally-located EMG channel recording per muscle group was
selected for use in single-channel processing. For all recordings, a
blanking interval of 20 ms was removed to simulate the effects of
stimulation artifacts [5], [6], and all data within an epoch rendered
invalid due to filter startup transients were discarded prior to the
smoothing stage of EMG amplitude estimation.

To evaluate the performance of the epoch-based EMG amplitude
estimation algorithm, an EMGamp-torque relationship was fit to a
training recording and then used to predict torque from a separate
test recording. This method assumed that a more accurate EMG
amplitude estimate results in a more precise torque estimate. For each
epoch, the torque was averaged to obtain a single value. To train the
EMGamp-torque relationship, a linear least squares solution to the
linear dynamic system equation:T(i) = e0E(i)+e1E(i�1)+ � � �+

eNE(i�N)+ f0F (i)+ f1F (i� 1)+ � � �+ fNF (i�N) was found
[2], [3]. This equation relates torque (T ) at sample i, to the present
and N past samples of the EMG amplitude estimates of extensor (E)
and flexor (F ) muscles using the fit coefficients e0; e1; . . . ; eN and
f0; f1; . . . ; fN . This least squares solution was then used to estimate
torque and compare against the measured torque in the test recording
(RMS error was measured in percent flexion MVC, averaged across
all epochs in a trial). A dynamic linear model was selected because
it has been shown to capture a great deal of the EMGamp-torque
relationship, and is commonly employed in the literature (c.f., [2]).
Hence, comparison of the reduction of torque estimation error due
to different EMG amplitude estimates can be related to other studies
found in the literature. The order, N , of the EMGamp-torque model
was varied from one to sixty to determine the model order’s effect on
torque estimation error. We used each of the five recordings, in each of
the three data sets, as training data for the EMGamp-torque model and
tested the remaining four recordings of that set with the model. This
arrangement resulted in 60 training-test combinations per tracking
speed for each subject, under each test condition. All computation was
performed in MATLAB (The MathWorks, Inc., Natick, MA).
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TABLE I
RMS TORQUE ESTIMATION ERRORS, COMPUTED ACROSS ALL TRAIN-TEST COMBINATIONS FOR ALL SUBJECTS, IN PERCENT FLEXION MVC. EACH CELL LISTS

MEAN� STANDARD DEVIATION. ERRORS ASSESSED AT THE OPTIMUM NOISE REJECTION/WHITENING FILTER ORDER (FOR WHITENED PROCESSORS)

Fig. 2. Contour plot of EMG to torque estimation errors (averaged over all
trials and subjects) as a function of EMGamp-torque model order and whitening
filter order. NW corresponds to the error level without whitening. Test
conditions: Multiple-channel, 80-ms epochs, fast-tracking task, least-squares
filter design method. Asterisk shows location and error value of minimum. All
errors are expressed in percent flexion MVC.

III. RESULTS

The contour plot in Fig. 2 illustrates an example of the change
in torque estimation error as the system identification and noise
rejection/whitening filter orders were varied. For each test condition,
the system identification model order at which the error in the contour
plot was minimized was used for all subsequent analysis. Table I
lists the RMS errors, averaged across all train-test combinations for
all subjects, at the optimum noise rejection/whitening filter order.
Table II lists the percentage improvement of each EMG processor,
as compared to single-channel unwhitened estimates. Whitening
single-channel EMG data provided a 9.1%–12.5% improvement over
unwhitened single-channel estimates. Using multiple channels of
EMG data without whitening yielded an 11.5%–14.4% improve-
ment over unwhitened single-channel estimates. By subtracting the
multiple-channel unwhitened percentages from the multiple-channel
whitened percentages in the table, it is evident that whitening
multiple-channel EMG data provided an additional 8.1%–10.5%
improvement over unwhitened multiple-channel estimates.

Fig. 3 shows the influence of noise rejection/whitening filter order
on EMGamp-torque estimation error for the slow tracking speed. The
shorter epoch durations exhibited a more pronounced minimum error,
while the longer epoch durations had a flat region after the minimum.
For all conditions evaluated (including the fast tracking speed results),
the lowest error occurred at a model order of either 12 or 18 (corre-
sponding to a startup transient of 2.9 or 4.4ms, respectively). This order
is well below the filter order of 60 used in the stream-based adaptive
whitening algorithm [8], leaving farmore of the epoch available for am-
plitude estimation. Conversely, when the window filter design method

TABLE II
PERCENTAGE REDUCTION IN AVERAGE RMS TORQUE ESTIMATION ERRORS

COMPARED TO RESULTS WHEN USING SINGLE-CHANNEL UNWHITENED

AMPLITUDE ESTIMATES. ERRORS ASSESSED AT THE OPTIMUM NOISE

REJECTION/WHITENING FILTER ORDER

Fig. 3. Comparison of multiple- and single-channel results using varying
epoch lengths for the slow tracking speed. Each plot shows the EMGamp-torque
estimation error (in percent flexion MVC) versus the order of the combined
noise rejection/adaptive whitening filter. NW corresponds to the error level
without whitening. Top three plots are for single-channel EMG amplitude
estimates, bottom three plots are for multiple-channel EMG amplitude
estimates. Lines are an aid to the eye only.

was used, the best filter order was typically more than twice as long,
varied considerably with the testing condition, and resulted in larger
EMGamp-torque errors. Higher filter orders result in there being fewer
samples with which to compute each amplitude estimate. Since esti-
mation accuracy decreases as epoch duration decreases, shorter epochs
result in higher average torque estimation error. This effect occurs for
both single- and multiple-channels and can also be seen in Fig. 3.

Our results also found that whitened estimates gave lower torque
errors than unwhitened estimates in a higher percentage of comparisons
at the optimal filter order. For each of the 15 subjects, paired t-tests were
performed on the differences in RMS estimation error (averaged over
all epochs in a trail) between each filter order and unwhitened estimates
(from the 60 train-test combinations for a set of testing parameters).
At the optimal filter order (12 or 18), whitening yielded a statistically
significant performance improvement for a total of 9–13 of the subjects
(tests were computed to a significance level of 0.05), depending on the
testing parameters.
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IV. SUMMARY AND CONCLUSION

The results presented in this paper suggest that whitening can
be used to improve EMG amplitude estimation for FES (and other
systems that require epoch-based estimates). The improvement,
evaluated via EMGamp-torque estimation errors, when going from
single-channel unwhitened to multiple-channel whitened estimates
was approximately 22%. Generally, half of this improvement was due
to whitening, while the other half was attributed to the use of mul-
tiple-channel EMG. Furthermore, computing whitened single-channel
estimates yielded roughly the same results as multiple-channel es-
timates without whitening. This result is consistent with the work
presented in [8]. It is important to note that torque estimation was used
as a proxy for EMG amplitude estimation, and a one-to-one relation-
ship between them does not exist. For instance, even if the processing
techniques provided perfect estimates of EMG amplitude, the resulting
torque estimation error would not be 0% due to model inaccuracies
and measurement errors. Thus, the percentage reductions in torque
errors due to whitening and multiple channels likely underestimate the
improvement in EMG amplitude estimator performance.

For the combined noise rejection/adaptive whitening filter, orders
between 12 and 18 yielded both the lowest average error in estimated
torque and the highest percentage of whitened estimates being an
improvement over unwhitened estimates. The optimal order for the
whitening filter also stays between 12 and 18 at each of the three
epoch durations. The epoch-based algorithms presented in this paper
were an improvement over the stream-based algorithms in terms of
average error, optimal filter length, and filter length consistency. Filter
design via the least-squares design technique might also be useful in
stream-based algorithms when lower filter orders are beneficial (e.g.,
to reduce computational load in real-time applications). In summary,
our best epoch-based, multiple-channel, adaptive whitening algorithm
produced 21.4%–22.5% less error than the unwhitened single-channel
technique in an EMGamp-torque estimation task.
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Analytical Model of Extracellular Potentials in a Tissue
Slab With a Finite Bath

Joseph V. Tranquillo, Dana O. Burwell, and Craig S. Henriquez*

Abstract—Extracellular potentials are often used to assess the activation
and repolarization of transmembrane action potentials in cardiac tissue
under a variety of experimental conditions. An analytical model of the
extracellular potentials arising from a planar wavefront propagating in
a three-dimensional slab of cardiac tissue with a variably thick adjacent
volume conductor or bath is presented. Starting with the transmembrane
potential, the model yields the extracellular potentials at various points
in the bath and inside tissue. The results show that the analytical model
produces signal timecourses with trivial computational costs that are
similar to those computed from a full reaction-diffusion bidomain model
with different bath thicknesses for tissue with uniform properties and for
tissue with an abrupt ionic inhomogeneity.

Index Terms—Bidomain, cardiac electrophysiology, extracellular poten-
tials.

I. INTRODUCTION

Extracellular potentials (�e) are often used to determine the time of
cellular activation during propagation and, thus, provide spatial maps
of the activation wavefront. In some situations, the signals are also
used to access local and spatial changes in refractoriness, possibly re-
vealing an arrhythmogenic substrate. Because the extracellular poten-
tial is the result of current sources throughout the tissue, it depends on
many factors, including the timecourse of the transmembrane poten-
tial, the relative locations of the sensing and reference electrodes, the
electrical conductivities of the intracellular and interstitial spaces and
the size of the adjacent volume conductor. Numerically solving the full
reaction-diffusion bidomain equations that govern cardiac current flow
in three dimensions can require considerable computational resources.

Manuscript received January 25, 2004; revised July 2, 2004. This work was
supported in part by National Science Foundation (NSF) under Grant DBI-
9974533. Astertisk indicates corresponding author.

J. V. Tranquillo and D. O. Burwell are with the Department of Biomedical
Engineering, Duke University, Durham, NC 27708 USA.

*C. S. Henriquez is with the Department of Biomedical Engineering, 136
Hudson Hall, P.O. Box 90281, Duke University, Durham NC 27708-0281 USA
(e-mail: ch@duke.edu).

Digital Object Identifier 10.1109/TBME.2004.840467

0018-9294/$20.00 © 2005 IEEE


