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Abstract—Distributed transmit beamforming has recently been
proposed as a technique in which several single-antenna sources
cooperate to form a virtual antenna array and simultaneously
transmit with phase-aligned carriers such that the passband
signals coherently combine at an intended destination. The
power gains of distributed transmit beamforming can provide
increased range, rate, energy efficiency, and/or security, as well as
reduce interference. Distributed transmit beamforming, however,
typically requires precise synchronization between the sources
with timing errors on the order of picoseconds. In this paper, a
new two-way synchronization protocol is developed to facilitate

precise source synchronization and retrodirective distributed
transmit beamforming. The two-way synchronization protocol
is developed under the assumption that all processing at each
source node is performed with local observations in local time. An
analysis of the statistical properties of the phase and frequency
estimation errors in the two-way synchronization protocol and
the resulting power gain of a distributed transmit beamformer
using this protocol is provided. Numerical examples are also
presented characterizing the performance of distributed transmit
beamforming in a system using two-way source synchronization.
The numerical results demonstrate that near-ideal beamforming
performance can be achieved with low synchronization overhead.

I. INTRODUCTION

Distributed transmit beamforming is a technique in which

multiple individual single-antenna sources simultaneously

transmit a common message and control the phase and fre-

quency of their carriers so that their bandpass signals construc-

tively combine at an intended destination. The transmitters

in a distributed transmit beamformer form a virtual antenna

array and, in principle, can achieve all of the gains of a

conventional antenna array, e.g. increased range, rate, and/or

energy efficiency, without the size, cost, and complexity of a

conventional antenna array. Distributed transmit beamforming

can also provide benefits in terms of security and interference

reduction since less transmit power is scattered in unintended

directions.

A common assumption in the literature is that distributed

transmit beamforming can be performed by using time-

division-duplexing (TDD) and a phase conjugation technique

similar to the retrodirective “Pon array” [1] technique de-

veloped for conventional antenna arrays. The approach is

as follows: (i) the destination node first broadcasts a signal
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received by each source node and (ii) each source node then

transmits back to the destination at the same frequency but

with conjugate phase. In principle, the phase conjugation at

each transmitter cancels the phase shift of the channel. This

causes the carriers to arrive in phase and coherently combine

at the destination.

While this retrodirective transmission technique is known

to be effective for conventional antenna arrays where each

antenna element is connected to a common local oscillator, it

is actually likely to be ineffective in distributed transmission

systems in which each source node has its own independent

local oscillator if the source nodes are not pre-synchronized. To

demonstrate the critical role of synchronization in distributed

transmit beamforming, consider a system with two unsynchro-

nized source nodes, denoted as S1 and S2, and one destination

node. Denote the time at the destination node as t and the time

at the source nodes as t1 and t2. For purposes of illustration,

we assume that Si has an unknown fixed local time offset with

respect to the destination node’s time such that ti = t+ ∆i.

Figure 1 shows a TDD timeline in which the unknown

local clock offsets ∆1 and ∆2 are different, i.e. the source

nodes are not pre-synchronized. In the first step of TDD

operation, the destination node broadcasts the signal x0(t) =
exp{jω0t}It∈[0,T ) to the source nodes, where T is the signal

duration and the indicator function It∈A = 1 when t ∈ A, and

is otherwise equal to zero. This signal is represented as the

solid-line signal in Figure 1. Assuming single-path unit-gain

channels and ignoring noise, the signal received by Si can then

be written as

yi(t) = exp{jω0(t− τ0,i)}It∈[τ0,i,τ0,i+T ) (1)

for i = 1, 2 where τ0,i is the unknown propagation delay of

the channel from the destination node to Si. These signals

are illustrated as the solid-line signals on the source node’s

timelines in Figure 1. Note that (1) is written in the destination

node’s local time. In the source node’s local time,

yi(ti) = exp{jω0(ti − ∆i − τ0,i)}Iti∈[∆i+τ0,i,∆i+τ0,i+T )

for i = 1, 2. The phase estimate at Si is then calculated as the

phase at ti = 0, i.e. −ω0(∆i + τ0,i).
In the second step of TDD operation, both source nodes

transmit with conjugate phase back to the destination. The

carrier transmitted by Si can be written as

xi(ti) = exp{jω0(ti + ∆i + τ0,i)}Iti∈[si,si+T ′) (2)

where T ′ is the transmission duration and si is the starting

time of the transmission for source node i. These signals
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Fig. 1. An example of time-division-duplexing (TDD) in a system with two
unsynchronized source nodes. The carriers transmitted by the source nodes in
this example fully cancel each other at the destination node.

are shown as the dotted and dash-dotted signals for S1 and

S2, respectively, on the source node’s timelines in Figure 1.

Converting (2) to the destination node’s local time, we have

xi(t) = exp{jω0(t+ 2∆i + τ0,i)}It∈[si−∆i,si−∆i+T ′).

The aggregate signal received by the destination node after

propagation from each source to the destination is then

y0(t) =

2
∑

i=1

exp{jω0(t+ 2∆i)}It∈[s′

i
,s′

i
+T ′) (3)

where s′i := si − ∆i + τ0,i. This last expression exposes the

two elements of synchronization necessary to ensure coherent

combining of the signals at the destination node. First, in order

for the carriers to constructively combine, (3) requires that

2ω0∆1 ≡ 2ω0∆2 (mod 2π). This condition is necessary and

sufficient to achieve carrier coherence.

The second synchronization element required to ensure the

signals coherently combine at the destination node relates to

the start time of transmission at each source node. In order

for source nodes’ signals to arrive at the same time at the

destination, the transmission start times must be staggered such

that s′1 = s′2. This condition is necessary and sufficient to

achieve message coherence.

The focus of this paper is primarily on the problem of

achieving carrier coherence since, as shown in this exam-

ple, the effects of carrier offset can be critical. Moreover,

carrier coherence is usually considered the more difficult

problem because the synchronization accuracy required for

carrier coherence is typically on the order of picoseconds. The

problem of message coherence is also important and has been

considered in [2], but the timing accuracy requirements are

less stringent and the effects of message offset, i.e. intersymbol

interference, are usually less critical.

Several carrier synchronization techniques have recently

been proposed for distributed transmit beamforming includ-

ing full-feedback closed-loop [3], one-bit closed-loop [4]–

[6], master-slave open-loop [7], and round-trip open-loop

carrier synchronization [8], [9]. Each of these techniques has

advantages and disadvantages in particular applications, as

discussed in the survey article [10].

In this paper, we describe a new synchronization technique

called two-way synchronization [11] and demonstrate its effi-

cacy in noise-free and noisy channels. Two-way synchroniza-

tion is similar in some aspects to round-trip synchronization,

but, unlike the round-trip carrier synchronization techniques

described in [8], [9], two-way synchronization is performed

among the source nodes prior to the transmission of a beacon

from the intended destination.

The main contributions of this paper are a description of

the two-way carrier synchronization technique in a system

where each source node has an independent local oscillator.

We also show how appropriate transmission phases can be

generated to enable beamforming to an intended destination.

We then analyze the statistical properties of the two-way

synchronization protocol in terms of the estimation errors and

oscillator phase noise. We conclude with numerical examples

that show that the two-way synchronization overhead can be

small with respect to the expected useful beamforming time.

II. SYSTEM MODEL

We consider the system illustrated in Figure 2 one destina-

tion node, denoted as node 0, and M source nodes, denoted as

nodes S1, . . . ,SM . All nodes are assumed to possess a single

isotropic antenna. The channel between the destination node

and Sm is modeled as a causal linear time-invariant (LTI)

system with impulse response gm(t). The channel between

Sm and Sn is also modeled as a causal linear time-invariant

(LTI) system with impulse response hm,n(t) The noise in

each channel is additive, white, and Gaussian and the impulse

response of each channel in the system is assumed to be

reciprocal, i.e. hm,n(t) = hn,m(t).
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Fig. 2. A system with M = 3 source nodes and one destination node.

We assume the local time at Si has an unknown rate offset

βi and an unknown time offset ∆i with respect to a reference

time t such that

ti = βi(t+ ∆i). (4)



This model does not include the effect of oscillator phase

noise but is reasonable over short durations, e.g. during

synchronization. The effects of oscillator phase noise during

beamforming are considered in Section V.

III. TWO-WAY SOURCE SYNCHRONIZATION PROTOCOL

The two-way source synchronization protocol is initiated

by S1 transmitting a sinusoidal beacon to S2. This sinusoidal

beacon is retransmitted through increasing indices S2 → S3 →
· · · → SM−1 → SM (“forward propagation”), where each

retransmission is a periodic extension of the beacon received

in the previous timeslot. A second sinusoidal beacon, initiated

by SM , is similarly transmitted through the decreasing indices

SM → SM−1 → · · · → S2 → S1 (“backward propagation”).

Assuming approximately the same frequency is used for the

forward and backward propagated beacons, 2M − 2 non-

overlapping time slots (enumerated as TS
(1), . . . ,TS

(2M−2))

are used to ensure there is no mutual interference among

the 2M − 2 individual transmissions in the two-way source

synchronization protocol.

The signals exchanged and estimates generated in each

timeslot are explicitly described for the forward propagation

stage as follows. In TS
(1), S1 transmits a sinusoidal beacon

x
(1)
1 (t1) = exp{j(ω1t1 + φ1)}I

t1∈T
(1)
1

to S2 where T
(1)
1 is

the transmission interval of S1 in TS
(1)

. Note that x(1)(t1) is

expressed in local time for S1. This beacon propagates through

the channel to S2 and is received in local time at S2 as

y
(1)
2 (t2) = a1,2 exp {j (f1,2(t2) + φ1)} I

t2∈T
(1)
2

+ w
(1)
2 (t2)

where T
(1)
2 is the reception interval of S2 in TS

(1), w
(1)
2 (t2)

is the noise in the signal received by S2 in TS
(1), f1,2(t2) :=

β1ω1

(

t2
β2

+ ∆1 − ∆2

)

+ ψ1,2, and a1,2 = |H1,2(β1ω1)| and

ψ1,2 = ∠H1,2(β1ω1) are the amplitude and phase shift,

respectively, of the LTI channel between S1 and S2 at the

“true” frequency β1ω1. This observation is then used by S2 to

generate frequency and phase estimates

ω̂
(1)
2 =

β1ω1 + ω̃
(1)
2

β2
, and (5)

φ̂
(1)
2 = β1ω1(∆1 − ∆2) + ψ1,2 + φ1 + φ̃

(1)
2 (6)

where ω̃
(1)
2 and φ̃

(1)
2 are the frequency and phase estimation

error, respectively, at S2 in TS
(1).

This process is repeated through increasing source node

indices. In each timeslot, a source node transmits a periodic

extension of the beacon it received in the prior timeslot

to the next source node. The signal transmitted by Si−1

to Si in TS
(i−1) is x

(i−1)
i−1 (ti−1) = exp{j(ω̂

(i−2)
i−1 ti−1 +

φ̂
(i−2)
i−1 )}I

ti−1∈T
(i−1)
i−1

. After propagation through the LTI chan-

nel to Si, the signal is received as

y
(i−1)
i (ti) = ai−1,i exp

{

j
(

fi−1,i(ti) + φ̂
(i−2)
i−1

)}

I
ti∈T

(i−1)
i

+ w
(i−1)
i (ti)

where fi−1,i := βi−1ω̂
(i−2)
i−1

(

ti

βi
+ ∆i−1 − ∆i

)

+ψi−1,i. This

observation is then used by Si to generate frequency and phase
estimates

ω̂
(i−1)
i =

βi−1ω̂
(i−2)
i−1 + ω̃

(i−1)
i

βi

, and (7)

φ̂
(i−1)
i = βi−1ω̂

(i−2)
i−1 (∆i−1 − ∆i) + ψi−1,i + φ̂

(i−2)
i−1 + φ̃

(i−1)
i (8)

for i = 3, . . . ,M , where ω̃
(i−1)
i and φ̃

(i−1)
i are the frequency

and phase estimation error, respectively, at Si in TS
(i−1)

. The

forward propagation stage concludes at the end of TS
(M−1).

Backward propagation is the same as forward propagation

except SM initiates the process by transmitting a sinusoidal

beacon x
(M)
M (tM ) = exp{j(ωM tM+φM )}I

tM∈T
(M)
M

to SM−1.

The beacons are retransmitted through decreasing indices i =
M − 1, . . . , 1 and the backward propagation stage concludes

after S1 receives the final beacon in TS
(2M−2).

At the end of the two-way source synchronization protocol,

each source except S1 and SM has two sets of phase and

frequency estimates. Sources S1 and SM use their initial

beacon phase and frequency (ω1 and φ1 or ωM and φM )

as their other estimates. Note that these “estimates” have no

estimation error. For notational convenience, we denote the

four estimates obtained by Si as ω̂i,1, ω̂i,2, φ̂i,1, and φ̂i,2.

IV. SYNCHRONIZATION AND BEAMFORMING

After the exchange of beacons, each source adds its first and

second estimates to synthesize a synchronized local oscillator

(SLO) with frequency ω̂i = ω̂i,1 + ω̂i,2 and initial phase φ̂i =

φ̂i,1 + φ̂i,2. If we temporarily assume that each source node’s

phase and frequency estimates are perfect1 in the sense that

there is no estimation error in each timeslot, it is not difficult

to show that the SLO phase ξi := ω̂iti + φ̂i is identical at all

source nodes (modulo 2π). To see this, we can use (7) in the

forward propagation stage to write the first frequency estimate

at Si as

ω̂i,1 =
βi−1

βi

ω̂i−1,1 =
β1

βi

ω1

for i = 2, . . . ,M . The second equality results from a recursive

application of the first equality and the fact that ω̂1,1 := ω1.

Along the same lines, we can use (7) in the backward

propagation stage to write the second frequency estimate at

Si as

ω̂i,2 =
βi+1

βi

ω̂i+1,2 =
βM

βi

ωM

for i = M − 1, . . . , 1 where ω̂M,2 := ωM . The resulting

frequency at Si is then

ω̂i = ω̂i,1 + ω̂i,2 =
β1ω1 + βMωM

βi

. (9)

The first phase estimate at Si can be calculated from (7)

and (8) in the forward propagation stage as

φ̂i,1 = β1ω1(∆i−1 − ∆i) + ψi−1,i + φ̂i−1,1

= β1ω1(∆1 − ∆i) +

i−1
∑

ℓ=1

ψℓ,ℓ+1 + φ1

1Imperfect estimates are considered in Section V.



for i = 2, . . . ,M where we have used βi−1ω̂
(i−2)
i−1 =

βi−1ω̂i−1,1 = β1ω1 and where the second equality results

from a recursive application of the first equality. Along the

same lines, we can use (7) and (8) in the backward propagation

stage to write the second phase estimate at Si as

φ̂i,2 = βMωM (∆M − ∆i) +

M−1
∑

ℓ=i

ψℓ+1,ℓ + φM

for i = M −1, . . . , 1. Since ψℓ+1,ℓ = ψℓ,ℓ+1, i.e. the channels

have reciprocal phase shifts, the resulting phase at Si can be

written as

φ̂i = β1ω1(∆1−∆i)+βMωM (∆M−∆i)+ψ̄+φ1+φM (10)

where we have defined ψ̄ :=
∑M−1

ℓ=1 ψℓ,ℓ+1.

Putting it all together, the SLO phase at Si is then

ξi =
β1ω1 + βMωM

βi

ti + β1ω1(∆1 − ∆i) + φ1

+ βMωM (∆M − ∆i) + φM + ψ̄

= (β1ω1 + βMωM )t+ γ1 + γM + ψ̄

where the second equality results from (4) and γm :=
βmωm∆m + φm. Hence, even though each source node

possesses its own local notion of time and operates only on

its own local estimates, each source node is able to synthesize

a synchronized local oscillator after two-way synchronization.

After the formation of the SLOs, retrodirective distributed

transmit beamforming can be performed using TDD tech-

niques such as those described in [1]. For notational simplicity,

assume that the destination’s notion of time is reference time

so that t0 = t. After receiving the transmission from the des-

tination at frequency ω0, each source, for example, estimates

the frequency and phase of this transmission and subtract these

estimates, denoted as ω̂
(0)
i and φ̂

(0)
i , respectively, from the SLO

frequency and phase to generate the beamforming carrier

x
(bf)
i (ti) = exp

{

j
(

(ω̂i − ω̂
(0)
i )ti + φ̂i − φ̂

(0)
i

)}

. (11)

Assuming again that the estimates are perfect, the sum of these

carriers after propagation to the destination can be written as

y
(bf)
0 (t) =

M
∑

i=1

a0,i exp
{

j
(

ω̄t+ γ̄ + ψ̄
)}

I
t∈T

(bf)
i,0

+ w
(bf)
0 (t)

where ω̄ := β1ω1 +βMωM −ω0 and γ̄ := γ1 + γM − γ0. The

received power of the aggregate unmodulated carriers at the

destination node in this case is |y
(bf)
0 (t)|2 = (

∑

i a0,i)
2
. This

corresponds to the power of an “ideal” transmit beamformer,

when each source node transmits with unit carrier amplitude.

V. PERFORMANCE ANALYSIS WITH ESTIMATION ERROR

Estimation errors incurred during two-way synchronization
and source-destination channel phase estimation as well as
phase noise at each source node all lead to some loss of
performance with respect to the ideal transmit beamformer.

At time t, the power of the aggregate carriers from the M
source nodes received at the destination can be expressed as

|y
(bf)
0 (t)|2 =

M
X

m=1

a
2
0,m +

M
X

m=1

X

n6=m

a0,ma0,n cos (δm,n(t)) (12)

where the non-ideal nature of the distributed beamformer is

captured in the carrier offset terms between Sm and Sn

δm,n(t) := (ω̂m − ω̂(0)
m )βm(t+ ∆m)

−(ω̂n − ω̂(0)
n )βn(t+ ∆n)

+(φ̂m − φ̂(0)
m + ψm,0)

−(φ̂n − φ̂(0)
n + ψn,0)

+χm(t) − χn(t)

(13)

where χm(t) − χn(t) represents the difference in the phase

noise processes of the SLOs between Sm and Sn. Note that

(13) is composed of three components: carrier frequency

offset, initial carrier phase offset at t = 0, and phase noise.

We can rewrite (13) in these terms as

δm,n(t) = ω̃m,nt+ φ̃m,n + χm,n(t). (14)

The frequency and phase estimates in (13) can be written as

ω̂m =
β1ω1 + βMωM + ω̃m

βm

, (15)

ω̂(0)
m =

ω0 + ω̃
(0)
m

βm

, (16)

φ̂m = β1ω1(∆1 − ∆m) + βMωM (∆M − ∆m)

+ φ1 + φM + ψ̄ + φ̃m

(17)

φ̂(0)
m = ω0(∆0 − ∆m) + ψ0,m + φ0 + φ̃(0)

m . (18)

Substituting these expressions into (13) allows us to write the

frequency and phase offsets in (14) in terms of the individual

estimation errors as

ω̃m,n = (ω̃m − ω̃(0)
m ) − (ω̃n − ω̃(0)

n ) (19)

φ̃m,n = (φ̃m − φ̃(0)
m ) − (φ̃n − φ̃(0)

n )

+ ∆m(ω̃m − ω̃(0)
m ) − ∆n(ω̃n − ω̃(0)

n ).
(20)

The carrier frequency and phase offsets between Sm and Sn

are analyzed in terms of the constituent estimation errors in

the following sections. The statistical properties of the phase

noise processes are discussed in Section V-D.

A. Frequency and Phase Estimation Error Statistics

To facilitate analysis, we assume all of the estimates are

unbiased and that the estimation errors are jointly Gaussian

distributed. It can be shown that the covariances E{ω̂mω̂n},

E{φ̂mφ̂n}, E{ω̂
(0)
m ω̂

(0)
n }, and E{φ̂

(0)
m φ̂

(0)
n } are all zero except

when m = n since observations in different timeslots are

affected by independent noise realizations and observations

at different source nodes are also affected by independent

noise realizations. It can also be shown that all of the other

covariances are zero except E{ω̂mφ̂m} and E{ω̂
(0)
m φ̂

(0)
m } since

frequency and phase estimates obtained from the same obser-

vation at a particular source node are not independent.



It is possible to bound the non-zero covariances with the

Cramer-Rao bound (CRB) [12]. Given an Ns-sample obser-

vation of a complex exponential of amplitude a, the CRB for

the covariance of the frequency and phase estimates is [13]

cov
{

[ω, φ]
⊤

}

≥
σ2

a2

[

1
T 2

s Ns(Q−P 2)
−(n0+P )

TsNs(Q−P 2)
−(n0+P )

TsNs(Q−P 2)
n2

0+2n0P+Q

Ns(Q−P 2)

]

(21)

where σ2 is the variance of the uncorrelated real and imaginary

components of the independent, identically distributed, zero-

mean, complex Gaussian noise samples, Ts is the sampling

period, n0 is the index of the first sample of the obser-

vation in the observer’s local time, P := (Ns − 1)/2,

Q := (Ns − 1)(2Ns − 1)/6, and A ≥ B means that

A−B is positive semidefinite. These results can be used as a

reasonable approximation for the non-zero covariances when

each source node uses an unbiased and efficient estimator,

e.g. the maximum likelihood estimator for large Ns [12], to

generate the local phase and frequency estimates.

B. Carrier Frequency Offset

In the forward propagation stage of the two-way syn-

chronization protocol, the estimation error ω̃
(i−1)
i in (7) is

defined with respect to the “true” frequency of the signal

transmitted by Si−1 in TS
(i−1). In TS

(1), the true frequency

of transmission is β1ω1. In TS
(i−1) for i = 3, . . . ,M , the

true frequency of transmission is βi−1ω̂
(i−2)
i−1 . The serial nature

of the transmissions in the two-way synchronization protocol

implies that the frequency error at Si with respect to the

initial true beacon frequency β1ω1 is an accumulation of the

individual frequency estimation errors, i.e. ω̃
(1)
2 + · · ·+ ω̃

(i−1)
i .

The same is true for the backward propagation stage except

the true frequency of the initial beacon is βMωM .

The frequency error of the SLO at Sm can thus be computed

from recursive application of (7) for the forward and backward

propagation stages as

ω̃m =
m

∑

ℓ=2

ω̃
(ℓ−1)
ℓ +

M−1
∑

ℓ=m

ω̃
(2M−ℓ−1)
ℓ (22)

where the first and second sums correspond to the accumulated

estimation error at Si in the forward and backward propagation

stages, respectively. Based on (19) and the assumptions in

Section V-A, this result shows that the carrier frequency

offsets between Sm and Sn are zero-mean and jointly Gaussian

distributed with covariances that can be straightforwardly com-

puted in terms of the constituent estimation error covariances.

C. Carrier Phase Offset

Similar to the frequency estimation errors, the phase esti-

mation errors in the forward and backward propagation stages

of the two-way synchronization protocol accumulate as the

signals propagate through increasing and decreasing source

node indices. The accumulation of phase error at Si, however,

is due to both constituent phase and frequency estimation

errors. In the forward propagation stage of the two-way

synchronization protocol, we can recursively apply (7) and

(8) to write the first local phase estimate at Sm as

φ̂(i−1)
m = β1ω1(∆1 − ∆m) + φ1 +

m
∑

ℓ=2

ψℓ−1,ℓ

+

m
∑

ℓ=2

φ̃
(ℓ−1)
ℓ +

m−1
∑

ℓ=2

ω̃
(ℓ−1)
ℓ (∆ℓ − ∆m)

for m = 2, . . . ,M . Similarly, the second local phase estimate
obtained during backward propagation at Sm is

φ̂
(2M−m−1)
m = βMωM (∆M − ∆m) + φM +

M−1
X

ℓ=m

ψℓ,ℓ+1

+
M−1
X

ℓ=m

φ̃
(2M−ℓ−1)
ℓ +

M−1
X

ℓ=m+1

ω̃
(2M−ℓ−1)
ℓ (∆ℓ − ∆m)

for m = 1, . . . ,M − 1. These estimates are summed at Sm to

generate the SLO phase. The resulting phase error is then

φ̃i =

i
∑

ℓ=2

φ̃
(ℓ−1)
ℓ +

i−1
∑

ℓ=2

ω̃
(ℓ−1)
ℓ (∆ℓ − ∆i)

+
M−1
∑

ℓ=i

φ̃
(2M−ℓ−1)
ℓ +

M−1
∑

ℓ=i+1

ω̃
(2M−ℓ−1)
ℓ (∆ℓ − ∆i).

Based on (20), (22), and the assumptions in Section V-A,

this result shows that the carrier phase offsets between Sm

and Sn are zero-mean and jointly Gaussian distributed with

covariances that can be straightforwardly computed in terms

of the constituent estimation error covariances.

D. Phase Noise

Phase noise causes the phase of the SLO at each source

node to randomly wander from the phase obtained at the end

of the two-way synchronization protocol. As shown in [9], this

can establish a ceiling on the reliable beamforming time even

in the absence of estimation error.

The phase noise χi(t) at Si can be modeled as a zero-mean

non-stationary Gaussian random process, independent of the

estimation errors, with variance increasing linearly with time,

i.e. σ2
χi

(t) = r(t − T
(sync)
i ) for t ≥ T

(sync)
i , where T

(sync)
i

is the time at which Si generates estimates ω̂i and φ̂i. The

variance parameter r is a function of the physical properties

of the oscillator including its natural frequency and physical

type [14]. We assume that all source nodes share the same

value of r but have independent phase noise processes.

VI. NUMERICAL RESULTS

This section presents numerical examples of the perfor-

mance retrodirective distributed transmit beamforming in a

system using two-way source synchronization. To provide a

fair comparison with single-source transmission, we normalize

the transmit power of each source node by M so that the total

transmit power is fixed. We compute the mean beamforming

gain with respect to single-source transmission.

The scenario considered in this section assumes 1 ms

observations during the forward and backward propagation



stages of the two-way synchronization protocol. All channels

are assumed to have unit gain and all signals are assumed to be

received at a signal to noise ratio of 10dB. At the conclusion

of the final synchronization timeslot, the source nodes form

their SLOs and the destination immediately broadcasts a 1 ms

beacon. The CRB results in (21) are used to generate the

jointly Gaussian constituent estimation errors with appropriate

covariances. The beamforming power at the destination for

each realization of the estimation errors and phase noise

processes is computed using the results in Section V.

Figure 3 shows the beamforming gain as a function of

time for different numbers of source nodes (M ) and different

levels of local oscillator phase noise (r). The r = 0 results

correspond to the case with no phase noise and isolate the

effect of carrier phase and frequency offsets on the mean

beamforming gain. The r = 1 results correspond to the

case when the each source node has an independent phase

noise process typical of a low-cost oscillator. In this case,

as expected, the mean beamforming gain degrades more

quickly. In both cases, periodic resynchronization is necessary

to prevent the nodes from slipping out of synchronicity and

transmitting incoherently. The overhead required for periodic

resynchronization, however, can be low with respect to the

amount of beamforming time. For example, in the case with

M = 8 source nodes, the mean beamforming gain of source

nodes with low-cost oscillators is within 1dB of ideal for

approximately 240 ms. The synchronization time in this case

is 14 ms, corresponding to an overhead of approximately 5%.

Even lower overheads can be achieved by using oscillators

with better phase noise characteristics, e.g. temperature con-

trolled oscillators.
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Fig. 3. Mean received beamforming gain as a function of beamforming time,
number of source nodes, and local oscillator phase noise parameter.

The results in Figure 3 also show that increasing the number

of source nodes participating in the distributed transmit beam-

former increases the mean received power at the destination,

up to the point in time when incoherent transmission begins.

The performance gap with respect to ideal, however, tends to

be larger when M is large because the amount of time spent

synchronizing the nodes leads to larger initial phase offsets at

the start of beamforming.

VII. CONCLUSION

This paper presented the two-way carrier synchronization

protocol and described its use in retrodirective distributed

transmit beamforming. An analysis of the statistical properties

of the phase and frequency estimation errors and resulting

power of a retrodirective distributed transmit beamformer was

also provided. Numerical examples characterizing the perfor-

mance of a distributed transmit beamformer in a system using

two-way synchronization were presented and demonstrated

that near-ideal beamforming performance can be achieved with

low synchronization overhead.
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