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ABSTRACT

This paper develops a joint coding and modulation scheme for end-

to-end communication system design using an autoencoder archi-

tecture in the ultra-short blocklength regime. Unlike the classical

approach of separately designing error correction codes and mod-

ulation schemes for a given channel, the approach here is to learn

an optimal mapping directly from messages to channel inputs while

simultaneously learning an optimal mapping directly from channel

outputs to estimated messages. The block error rate (BLER) of

this approach is compared against classical short blocklength lin-

ear block codes with binary phase shift keying (BPSK) modulation

in additive white Gaussian noise (AWGN) and Bernoulli-Gaussian

impulsive noise (BGIN) channels. For AWGN channels, numerical

results show that the autoencoder can achieve better BLER perfor-

mance than BPSK modulated Hamming codes with maximum like-

lihood decoding. For BGIN channels, numerical results show the

autoencoder achieves uniformly better BLER performance than con-

ventional block codes with BPSK modulation, even with impulsive

noise mitigation techniques such as blanking and clipping. The pro-

posed architecture is general and can be modified for comparison

against other block coding schemes and higher-order modulations.

Index Terms— Joint coding and modulation, impulsive noise

channel, error control coding, autoencoder, short blocklength, IoT

1. INTRODUCTION

Communication systems have traditionally been designed by consid-

ering each block, i.e., channel encoding, modulation, demodulation,

and channel decoding, separately [1]. For example, coding theorists

typically design error correction codes by abstracting and lumping

the effects of modulation, physical channel impairments, and de-

modulation into an “effective channel” with certain statistical prop-

erties. Similarly, communication theorists typically ignore error cor-

rection coding and develop efficient and robust modulation schemes

to overcome physical channel impairments. These approaches are

suboptimal, however, in many cases. This paper considers the ques-

tion of what can be gained by jointly designing error correction cod-

ing and modulation schemes with a focus on the ultra-short block-

length regime with a small number of input bits per message, i.e.,

(n, k) block codes with k ≤ 16. This regime is also of contemporary

interest due to Internet of Things (IoT) devices often transmitting

only infrequent and short messages with low latency requirements.

Joint channel coding and modulation was first proposed in the

context of trellis coded modulation and shaping [2] and more re-

cently in probabilistic amplitude shaping [3] for low-density parity-

check codes. More recently, researchers have considered the use of

autoencoders for jointly designing coding and modulation schemes

to overcome channel impairments [4, 5]. Generally speaking, au-

toencoders can be used to find a low-dimensional representation of

the input while facilitating reconstruction at the output with minimal

error [6]. Autoencoders have been successfully applied for end-to-

end communication system design in the binary-input additive white

Gaussian noise (bi-AWGN) channel [7–10]. More recently, autoen-

coders have been used to automate the discovery of decoding algo-

rithms for channels that do not have known good codes, e.g., the

feedback channel [11]. This work demonstrates the strong general-

ization capability of classical algorithms like Viterbi and BCJR on

convolutional and turbo codes, with near-optimal performance on

AWGN channels. The adaptability and flexibility of neural networks

allow them to operate in situations where some simplifying assump-

tions of standard coding, modulation, demodulation and decoding

techniques are not fulfilled [12]. Specifically, autoencoders can be

play a useful role in settings where there is either a model deficit

(when the model is not well-understood) or algorithmic deficit (when

the model is understood, but solutions are difficult to find in a large

search space). This paper focuses on the latter setting.

While the focus of this paper is on Bernoulli-Gaussian impul-

sive noise (BGIN) channels [13], we first demonstrate the efficacy

of an autoencoder on AWGN channels. Numerical results show that,

given the same block code parameters (n, k) and the same number

of channel symbols, the autoencoder can learn a code that achieves

better BLER performance than Hamming codes with BPSK modu-

lation and maximum likelihood (soft decision) detection. Somewhat

unexpectedly, the autoencoder finds a code with a smaller minimum

Euclidean distance but similar or better overall BLER than BPSK

modulated Hamming codes.

The main contribution of this paper is the application of the ideas

in [4, 5, 7–10] toward the development of new codes for the BGIN

channel which, to the best of our knowledge, has not been studied

in this context. Impulsive noise is prevalent in interference from

machines and/or electronic devices with random and high power

noise [14, 15] and little is currently known about channel coding

in this setting [16, 17]. In fact, soft decision decoding, while opti-

mal in the AWGN channel, can perform worse than hard decision

decoding in impulsive noise channels. This has led to the develop-

ment of impulsive noise mitigation techniques such as blanking and

clipping [18–20]. Rather than employing these heuristic techniques,

our approach is to train an autoencoder in impulsive noise channels

to minimize the BLER. Numerical results show that the trained au-

toencoder uniformly outperforms classical block codes with BPSK

modulation in the BGIN channel even when impulsive noise miti-

gation techniques such as blanking and clipping are employed. The

proposed architecture is general and can be modified for comparison

against other block coding schemes and higher-order modulations.

2. SYSTEM MODEL

We assume the point-to-point communication system model with

M = 2k distinct messages as illustrated in Fig. 1. The classical



approach at the transmitter is to provide a block of k bits at the in-

put of the channel encoder, map these bits to an n-bit codeword, and

then map this codeword to m real-valued symbols for transmission

through the channel. Similarly, at the receiver, the noisy symbols

are first demodulated and channel decoding is performed either on

the soft demodulator outputs or on the hard decisions from the de-

modulator. The autoencoder considered here lumps the coding and

modulation functions into fθ : {0, 1}k 7→ Rm, the memoryless

channel function into g : Rm 7→ Rm, and the demodulation and de-

coding functions into hθ : Rm 7→ {0, 1}k . The subscript θ indicates

that these functions have parameters that we can adapt and learn to

achieve a certain goal, e.g., minimizing the BLER.

We design the encoder and decoder similar to [4, 5] as shown

in Figure 1. The transmitter seeks to communicate message q ∈
{1, . . . ,M} to the receiver. The message is first mapped using a

one-hot-encoding scheme to s = 1q where 1q ∈ RM is a stan-

dard basis vector with qth element equal to one and all other ele-

ments equal to zero. Let Q = ∪M
q=11q ⊂ RM . The transmitter

neural network then generates a channel input se = fθ(s) where

fθ : Q 7→ Rm and where θ represents the weight vectors and biases.

The channel input se is then sent through a mapping y = g(se) with

g : Rm 7→ Rm where a per-block energy constraint is imposed and

an impairment (typically noise) is applied. The receiver then applies

the transformation hθ : Rm 7→ RM to compute a posterior probabil-

ity vector p ∈ RM of all possible messages q ∈ {1, . . . ,M} given

y. The decoded message q̂ is simply the index of the maximum

element of p. The autoencoder is trained end-to-end to minimize

the categorical cross-entropy loss function L between s and p with

respect to θ.
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Fig. 1. An autoencoder for an end-to-end communication system.

The focus in this paper is on comparisons to BPSK-modulated

Hamming codes where (n, k) = (2ℓ−1, 2ℓ−1−ℓ) for ℓ = 3, 4, . . .
and m = n. For fair comparisons, the autoencoder uses parameters

(n, k,m) identical to those of the conventional coding and modula-

tion scheme and is subject to the same per-block total energy con-

straint as conventional coding and modulation.

2.1. Block AWGN Channel

The AWGN channel is a mapping Y = g(X) = X + Z where

X ∈ Xm and Z ∼ N (0, σ2Im). For BPSK modulated symbols,

X = {−
√
Ec,+

√
Ec} where Ec = kEb/n is the energy per bit of

the modulated coded signal and Eb is the energy per information bit.

Such a channel can be compactly represented as AWGN(Eb/N0)
where Eb/N0 is the SNR of the AWGN channel.

2.2. Block BGIN Channel

The BGIN channel can be represented by Y = g(X) = X +
(Im − B)Z0 + BZ1 where X ∈ Xm, Z0 ∼ N (0, σ2

0Im),
Z1 ∼ N (0, σ2

1Im) and B = diag(b1, . . . , bm) where bi are

i.i.d. Bernoulli random variables with bi = 1 with probability pb and

bi = 0 otherwise. In typical impulsive noise channels we assume

σ2
1 ≫ σ2

0 such that pb represents the probability of the occurrence

of high variance impulsive noise for a given channel input. Such a

channel can be compactly represented as BGIN(Eb/N0, Eb/N1, pb)
where Eb/N0 is the SNR when the noise has low variance, Eb/N1 is

the SNR when the noise has high variance, and pb is the probability

the high noise variance channel.

3. AUTOENCODER FOR AWGN CHANNELS

To illustrate the utility of an autoencoder in a simple setting, we first

consider joint modulation and encoding with respect to a BPSK-

modulated Hamming code in AWGN channels. The network is

trained using the Adam optimizer [21] with a categorical cross-

entropy loss function at a training SNR of Eb/N0 = 3 dB. The

schematic of the autoencoder is shown in Table 1.

Table 1. Schematic of the autoencoder.
Layer Output Dim. Parameters

input M 0
fully connected + ReLU M 272
fully connected + linear n 119
Energy Constraint n 0
AWGN/Impulsive Channel n 0
fully connected + ReLU M 128
fully connected + softmax M 272

We first trained the autoencoder for the case (n, k,m) =
(7, 4, 7) with 106 examples, 2000 epochs, training SNR 3 dB

and a batch size of 1000. Table 2 compares the learned autoencoder

codebook (columns 8-14) to a (7, 4) Hamming code with BPSK

modulation [22] (columns 1-7), both with a total energy per encoded

block set to E = 7. Note that the learned codewords have the

same total per-block energy as conventional BPSK-modulated (7, 4)
Hamming codes, but the elements of each learned codeword are not

constant modulus.

Table 2. BPSK-modulated Hamming (7, 4) codewords and the

learned (7, 4, 7) autoencoder codewords, both with E = 7.

-1 -1 -1 -1 -1 -1 -1 0.60 0.37 1.30 -0.68 -1.15 0.40 1.69

-1 -1 -1 1 -1 1 1 0.89 -0.32 -0.06 -1.66 -1.57 -0.82 -0.43

-1 -1 1 -1 1 1 1 -1.40 -0.58 -0.88 0.58 0.65 -0.54 -1.70

-1 -1 1 1 1 -1 -1 0.71 -0.93 -1.92 0.08 0.13 1.22 -0.64

-1 1 -1 -1 1 1 -1 -1.50 -0.44 1.44 -1.41 0.14 -0.61 -0.29

-1 1 -1 1 1 -1 1 -0.17 -0.99 0.01 -0.29 1.90 -1.16 0.98

-1 1 1 -1 -1 -1 1 -1.59 0.21 -0.99 -0.47 -0.68 -1.48 0.76

-1 1 1 1 -1 1 -1 0.29 0.68 1.71 0.46 0.19 -1.00 -1.51

1 -1 -1 -1 1 -1 1 -0.66 0.40 -1.19 1.68 0.68 0.37 1.25

1 -1 -1 1 1 1 -1 0.10 1.41 -1.46 -0.67 -1.15 0.92 0.48

1 -1 1 -1 -1 1 -1 1.79 -0.60 0.92 1.10 0.72 0.37 0.84

1 -1 1 1 -1 -1 1 0.88 1.83 -0.05 0.33 0.57 -1.29 0.88

1 1 -1 -1 -1 1 1 0.68 -0.78 1.08 0.04 -0.91 1.39 -1.42

1 1 -1 1 -1 -1 -1 -0.64 -1.97 -0.54 -0.30 -0.81 0.68 1.10

1 1 1 -1 1 -1 -1 -0.97 -0.79 0.72 0.28 1.27 1.79 0.11

1 1 1 1 1 1 1 -1.79 0.23 0.41 0.87 -1.53 0.69 -0.03

Table 3 shows the pairwise Euclidean distance statistics of con-

ventional Hamming BPSK-modulated codewords and of the autoen-

coder learned codewords in Table 2. Observe that, although the

codewords learned by the autoencoder do not exhibit the structure

of the BPSK-modulated Hamming (7, 4) code, the distance statistics



of the autoencoder are essentially identical to those of the Hamming

code. Also note that the learned codewords are not unique, i.e., re-

training will result in different learned codewords. Nevertheless, in

each test, the distance statistics after training were always consistent

with those in Table 3.

Table 3. Pairwise Euclidean distance statistics for BPSK-modulated

Hamming (n, k) and (n, k, n) autoencoders with E = n.

Scheme Min Mean Max

Hamming (7, 4) with BPSK 3.464 3.836 5.292

(7, 4, 7) Autoencoder 3.429 3.836 5.289

Hamming (15, 11) with BPSK 3.464 5.430 7.746

(15, 11, 15) Autoencoder 3.277 5.431 7.609

Figure 2 plots the achieved BLER of the (7, 4, 7) autoencoder in

AWGN channels. The BLER of BPSK-modulated Hamming (7, 4)
codes and several finite-blocklength bounds (theoretical RCU [23]

and metaconverse [24]) along with the normal approximation [25]

are also plotted for comparison. In this case, the BLER performance

of the autoencoder is essentially identical to a BPSK-modulated

Hamming (7, 4) code with soft decision (maximum likelihood)

decoding.
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Fig. 2. BLER of the trained (7, 4, 7) autoencoder and BPSK-

modulated Hamming (7, 4) in an AWGN(Eb/N0) channel.

These tests were repeated for a (15, 11, 15) autoencoder and

compared to BPSK-modulated Hamming (15, 11) codes. The

learned codebook is too large to present here, but the distance statis-

tics are shown in Table 3 with a total per-block energy constraint of

E = 15. In our (15, 11, 15) autoencoder tests, we observed that the

autoencoder quickly converged to codewords with mean distance

identical to BPSK-modulated (15, 11) Hamming codes, whereas the

minimum distance was much slower to converge. The results shown

in Table 3 were achieved after training on 2× 107 examples for 150
epochs (other training parameters same as previous example).

Figure 3 plots the achieved BLER of the (15, 11, 15) autoen-

coder in AWGN channels along with the BLER of BPSK-modulated

Hamming (15, 11) code and the finite-blocklength bounds and ap-

proximations. Somewhat surprisingly, in light of the autoencoder’s

worse minimum distance statistic in Table 3, the achieved BLER of

the (15, 11, 15) autoencoder is approximately 0.5 dB better than that

of the conventional BPSK-modulated Hamming (15, 11) code with

soft decision (maximum likelihood) decoding. Additional inspec-

tion of the conditional BLER for each learned codeword showed

that the autoencoder learned an asymmetric code in the sense that

certain codewords had worse conditional BLER and other code-

words had better conditional BLER than the unconditional BLER.

This is in contrast to Hamming codes with BPSK modulation where

each codeword has a conditional BLER matching the unconditional

BLER due to symmetry. By finding more codewords with good

conditional BLER (at the cost of a small number of codewords with

worse conditional BLER), the autoencoder can outperform Ham-

ming codes with BPSK modulation in terms of unconditional BLER.
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Fig. 3. BLER of the trained (15, 11, 15) autoencoder and BPSK-

modulated Hamming (15, 11) in an AWGN(Eb/N0) channel.

4. AUTOENCODER FOR BGIN CHANNELS

In this section, we take a similar approach used in Section 3 and ap-

ply it to Bernoulli-Gaussian impulsive noise (BGIN) channels. The

main difference here is that the autoencoder is trained separately on

each Bernoulli-Gaussian probability pb ∈ {0, 0.1, . . . , 1}. This re-

sults in a family of learned autoencoders indexed by pb. The training

parameters are otherwise identical to those in Section 3.

A common approach for mitigating the effects of impulsive

noise is to use clipping or blanking before demodulation [26]. With

clipping, the received signal is limited to a clipping threshold, i.e.,

yclipped =

{

y |y| < Tc

sign(y)Tc |y| ≥ Tc

where Tc is the clipping threshold. Similarly, with blanking, the

received signal is set to zero if it exceeds a threshold, i.e.,

yblanked =

{

y |y| < Tb

0 |y| ≥ Tb

where Tb is the blanking threshold.



Figure 4 plots the achieved BLER of the family of trained

(7, 4, 7) autoencoders in BGIN(3dB,−7dB, pb) channels. The

BLER of BPSK-modulated Hamming (7, 4) codes with various

combinations of hard decisions, soft decisions, blanking, and clip-

ping are also plotted for comparison. The clipping and blanking

thresholds were set to Tc = Tb = mean(|yk|). In this example,

the autoencoder uniformly outperforms conventional coding and

modulation, with or without clipping or blanking. The cyan and

magenta lines represent the AWGN performance of (7, 4) Ham-

ming codes with BPSK modulation (corresponding to pb = 0 and

pb = 1). When pb = 0, channel symbols are always sent through

the AWGN(7dB) channel (the less noisy channel). When pb = 1,

channel symbols are always sent through the AWGN(−3dB) chan-

nel (the more noisy channel). Observe that the autoencoder is more

robust than hard and soft decision decoding, even with clipping or

blanking, at all values of pb.
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Fig. 4. BLER comparison of the family of trained (7, 4, 7)
autoencoders with BPSK-modulated Hamming (7, 4) in

BGIN(3dB,−7dB, pb) channels.

Similarly, Figure 5 shows the BLER performance of the family

of trained (15, 11, 15) autoencoders compared to BPSK-modulated

(15, 11) Hamming codes in BGIN(3dB,−7dB, pb) channels.

Again, the achieved BLER of the autoencoder uniformly outper-

forms conventional coding and modulation with and without clip-

ping and blanking (with Tc = Tb = mean(|yk|)). This example

shows that, even with longer blocklength codes, an autoencoder

trained to minimize the BLER in impulsive noise is more robust

than the conventional methods at all values of pb. The training was

done on 5×106 examples and the parameters are otherwise identical

to those of the (15, 11, 15) autoencoder in Section 3.

In our tests, we observed that the adaptation rate of the autoen-

coder is highly dependent on the training SNR. It is important to

set Eb/N0 such that the autoencoder observes frequent examples of

correctly and incorrectly decoded blocks. This facilitates the training

process. Training at high SNRs, e.g., Eb/N0 = 8.5 dB, does not pro-

vide enough examples of block errors and adaptation is slow in this

setting. Similarly, training at a very low SNR like Eb/N0 = −3 dB

limits the number of examples of correctly decoded blocks and re-

sults in slow adaptation.
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Fig. 5. BLER comparison of the family of trained (15, 11, 15)
autoencoders with BPSK-modulated Hamming (15, 11) in

BGIN(3dB,−7dB, pb) channels.

5. CONCLUSION

In this paper, we consider the use of trained autoencoders for joint

coding and modulation in the ultra-short blocklength regime with

general memoryless channel models. We compare the end-to-end

BLER performance of the trained autoencoders in both AWGN and

impulsive noise scenarios for BPSK-modulated Hamming (7, 4) and

Hamming (15, 11) codes. Our results demonstrate that they can

learn efficient encoding, modulation and decoding functions and,

in some cases, can outperform classical separately coded/modulated

systems even with computationally intensive soft decision decod-

ing. In impulsive noise, the autoencoder learns better codewords

than a typical heuristic approach like clipping or blanking. These re-

sults suggest that, in situations where an autoencoder has sufficient

examples for training, it can be a promising solution in challeng-

ing channels including those where a precise channel model is not

available. While this paper considers memoryless channels, an inter-

esting extension would be to investigate the use of autoencoders in

the context of channels with memory, e.g., Markov-Middleton and

Markov-Gaussian models. We also plan to tackle harder channel

models which have no known good codes and the number of channel

outputs is a random variable, such as erasure and deletion channels.

While the focus of this paper was on comparisons to Hamming

codes with BPSK modulation due to page limitations, the approach

described here is generally applicable to any block coding scheme

and modulation format. The source code used to generate the results

in this paper (as well as for Golay codes and higher order modula-

tions) is available for download on GitHub [27].

Finally, we note that learning for an end-to-end communication

system is limited by its scalability to larger blocklengths, since the

autoencoder relies on one-hot-encoding and needs to be trained on

all possible codewords to minimize the BLER. An interesting alter-

native is training on hyperspherical output spaces [28, 29] that regu-

larize the mappings to avoid representation redundancy, thus retain-

ing the performance while decreasing the computational complexity.
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