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Abstract— This paper focuses on the development of a
cost-aware sequential Bayesian decision-making strategyfor
the search and classification of multiple unknown objects
within a task domain. Search and classification of multiple
objects of unknown numbers are competing tasks under
limited vehicle and sensory resources. This is because sensor-
equipped vehicles in the system can perform either the search
or classification task but not both at the same time. The
decision of one task over the other may result in missing
other, more important objects not yet found or missing the
opportunity to classify a found critical object. In this paper
we develop a cost-aware sequential Bayesian decision-making
strategy for search and classification, which results in the
detection and satisfactory classification of all the unknown
objects in the task domain.

I. I NTRODUCTION

In a search and classification mission, an autonomous
sensor-equipped vehicle searches for and classifies mul-
tiple objects distributed over a domain. The objective in
a search task is to find each object and fix its position
in space. The objective in a classification task is to
observe each found object and collect enough information
to classify it. Therefore, search and classification are two
competing demands. A sensor vehicle has to decide on
whether to continue searching or stop and characterize
once it finds an object. This decision may be very critical
in some applications as in search and rescue, where, for
example, finding and analyzing a nonhuman object may
come at the cost of delaying or altogether missing a live
human victim. Conversely, a vehicle may come across a
human victim and, at the cost of missing it, decides to
continue the search task.

When considering the cost of taking each new obser-
vation, one may make a decision using a limited number
of observations if the uncertainty is high. This is because,
at the outset of the mission, it is costly to keep taking
observations at one specific spot while ignoring a large
amount of unsurveyed regions in the domain. Under
these scenarios, the vehicle will make temporary decisions
based on the currently available observations, which may
lead to relatively large error probabilities of the decisions
made, but can come back later when the observation
cost is lower because more regions of the domain would
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have been investigated by that time, or equivalently, the
uncertainty level is lower.

We first review some of the related literature. Inspired
by work on particle filtering, in [1] the authors develop
a sensor team configuration control strategy under a
probabilistic framework to get optimal estimates for target
tracking. In [2], the authors use the Beta distribution
to model the confidence level of target existence for an
unmanned aerial vehicle (UAV) search task in an uncertain
environment. In [3], the above uncertainty measurements
are extended by using the Modified Bayes Factor, and pre-
diction of future measurement is also taken into account to
calculate the possible uncertainty reduction in UAV search
operations. An alternate approach for searching/trackingin
an uncertain environment is simultaneous localization and
mapping (SLAM) [4].

Coordinated search and tracking in a probabilistic
framework has been studied mainly for optimal path plan-
ning in the literature. In [5], the authors investigate search-
and-tracking using recursive Bayesian filtering with fore-
known targets’ positions with noise. The target may be lost
and needs to be found again due to measurement noise.
The results are extended in [6] for dynamic search spaces
based on forward reachable set analysis. In [7], the author
proposes a Bayesian-based multisensor-multitarget sensor
management scheme. The approximation strategy, based
on probability hypothesis densities, maximizes the square
of the expected number of targets. With the same objec-
tive, in [8] the authors seek to maximize the probability of
finding a target with some foreknown location information
in the presence of uncertainty. It is worth noting that in
the above literature there is no explicit decision-making
strategy for search and tracking.

Sequential detection [9] allows the number of observa-
tion samples to vary in order to achieve an optimal de-
cision. In our problem, with a relatively high observation
cost at the beginning of the mission, it is wise to make
a crude decision with fewer observations first, and return
to update the decision later when the cost is low. The
Baysian sequential detection method used in this paper is
such that the Bayes risk (to be formally defined in Section
V) is minimized in each time step. Another sequential
detection method is the Sequential Probability Ratio Test
(SPRT) [10], [9] based on Neyman-Pearson formulation
where no prior probability information is needed.

The paper is organized as follows. We first introduce
the sensor model in Section II. Combined with a real time
observation, the posterior probabilities are updated accord-
ing to the Bayes rule in Section III-A. In Section III-B,



an uncertainty map for the search process is built based
on the probability of object presence over the domain. A
classification uncertainty function is also defined for each
found object. Based on the uncertainty function, we define
metrics for search and classification in Section IV. In
Section V, we develop the cost-aware sequential Bayesian
decision-making strategy. To illustrate the performance of
our approach, in Section VI we provide a simulation for
a single cell in a search task. The algorithms for motion
control of the autonomous vehicle is developed in Section
VII and a full-scale simulation over the entire mission
domain for search versus classification is presented in
Section VIII. We conclude the paper with a summary of
current and future work in Section IX.

II. SETUP AND SENSORMODEL

Let D ⊂ R
2 be a domain in which objects to be

found and classified are located. Letq̃ be an arbitrary
point in D. Assume there areNtot cells in D. Let 1 ≤
No ≤ Ntot be the number of objects, which are spatially
i.i.d. overD. Denote the position of the static objectOj ,
j ∈ {1, 2, . . . , No} as pj andP as the set of all object
positions. BothNo andP are unknown beforehand.No

is a binomial random variable with parametersNtot and
Prob(q̃ ∈ P), where Prob(q̃ ∈ P) is the probability of
object presence at point̃q. We assume that there exists
a single autonomous sensor-equipped vehicle (denoted by
V) that performs the search and classification tasks. The
vehicleV satisfies the following simple first order discrete-
time equation of motion

q(t + 1) = q(t) + u(t),
where q ∈ D ⊂ R

2 represents the position ofV , and
u ∈ U ⊂ R

2 is the control input, whereU is the set of
allowable controls. At any timet, the vehicle can either
perform the search task or the classification task, but it is
not capable of performing both at the same time.

In this work, for both the search and classification
processes, we use a sensor model with Bernoulli distri-
bution, which gives binary outputs for a single observa-
tion, however, with different observation contents: object
“present” or “absent” for search, and property “F” or “G”
for classification.

A. Sensor Model for Search

In the search process, letXs(q̃) be a binary state
variable, where0 corresponds to object absent, and1
corresponds to object present. Note that the realization
of Xs(q̃) depends on the position of the observed point
q̃, that is,

Xs(q̃) =

{

1 q̃ ∈ P ,

0 otherwise.
SinceP is unknown and random,Xs(q̃) is a random vari-
able with respect to everỹq ∈ D. Since we assume that the
objects are immobile,Xs(q̃) is invariant with respect to
time. Define the observation indicating object present as a
positive observation and the observation indicating object
absent as a negative observation. LetYs(q̃) be a binary
observation variable, where0 corresponds to a negative

observation, and1 corresponds to a positive one taken at
point q̃.

Conditioned on the stateXs(q̃) at a particular point̃q,
let t be time index, the observationsYs,t(q̃) taken along
time are temporally i.i.d. Therefore, if take an observation
at each time step at̃q, for a window of L time steps,
there will beL + 1 different combinations of unordered
scalar observations, that is, ranging from zero positive
observation toL positive ones. Let the variableZs(q̃) be
the number of positive observations at pointq̃, which is a
number in the set{0, · · · , L}. The following(L + 1)× 2
matrix gives the general conditional probability matrix for
the search task:

Bs =











βL
s (1 − βs)

L

L(1 − βs)β
L−1
s Lβs(1 − βs)

L−1

...
...

(1 − βs)
L βL

s











, (1)

where βs is the parameter of the Binomial distribution
(L, βs), which describes the sensor probability of making
a correct observation. The matrix element(Bs)ij corre-
sponds to Prob[Zs = i|Xs(q̃) = j], i.e., the probability of
having i positive observations given statej.

The value ofβs depends on the range between the
sensor and the observed point. Here we assume a simple
model forβs that is a fourth order polynomial function of
s = ‖q(t) − q̃‖ within the sensor rangers and bn = 0.5
otherwise,

βs(s) =

{

Ms

r4
s

(

s2 − r2
s

)2
+ bn if s ≤ rs

bn if s > rs

, (2)

where Ms + bn gives the peak value ofβs if q̃ being
observed is located at the sensor vehicle’s location. The
sensing capability decreases with range and becomes0.5
outside of the limited sensory rangeW .

B. Sensor Model for Classification

In the classification process, letXc(p̃k) be a binary
state variable for objectk, where0 corresponds to object
having Property “G”, and1 corresponds to Property “F”.
Let Yc(p̃k) be a binary observation variable, where0
corresponds to observation showing Property “G”, and
1 corresponds to observation showing Property “F”. For
a window of L time steps, letZc(p̃k) be the number
of observations showing Property “F” for objectk, the
following (L+1)×2 matrix gives the general conditional
probability matrix for the classification task:

Bc =











βL
c (1 − βc)

L

L(1 − βc)β
L−1
c Lβc(1 − βc)

L−1

...
...

(1 − βc)
L βL

c











.

The value ofβc follows the some form asβs but with
parametersMc andrc.

III. B AYESIAN UPDATES AND UNCERTAINTY MAP

In this section, we summarize the main algorithms
presented by the authors in [11].



A. Bayesian Updates for Search and Classification

For the search process, the general update equation for
the probability of object presence is:

Ps(q̃, t + 1) = ys,t(q̃)
βsPs(q̃, t)

2βsPs(q̃, t) − βs − Ps(q̃, t) + 1

+(1 − ys,t(q̃))
(1 − βs)Ps(q̃, t)

−2βsPs(q̃, t) + βs + Ps(q̃, t)
, (3)

whereys,t(q̃) is the actual realization of the random vari-
able Ys,t(q̃). Note that the probability of object absence
is given by1 − Ps(q̃, t + 1).

For the classification process, the general update equa-
tion for the probability of a found objectk having property
“F” is:

Pc(p̃k, t + 1) = yc,t(p̃k)
βcPc(p̃k, t)

2βcPc(p̃k, t) − βc − Pc(p̃k, t) + 1

+(1 − yc,t(p̃k))
(1 − βc)Pc(p̃k, t)

−2βcPc(p̃k, t) + βc + Pc(p̃k, t)
. (4)

The probability of having property “G” is1−Pc(p̃k, t+1).
B. The Uncertainty Map

For the search process, we use the information entropy
function of the probability distribution of object presence
to construct an uncertainty map over the search domain.
The uncertainty map will be used to guide the vehicle
to regions of high uncertainty in the search domain. We
define the information entropy distribution for discrete
probability distributionPHs

= {Ps(q̃, t), 1 − Ps(q̃, t)}
(i.e, PHs

is the probability distribution for object present
and absent) at̃q at each time stept as Hs(PHs

, q̃, t) =
−Ps(q̃, t) lnPs(q̃, t) − (1 − Ps(q̃, t)) ln(1 − Ps(q̃, t)).

For the classification process, we define a sim-
ilar entropy function Hc(PHc

, p̃k, t), with PHc
=

{Pc(p̃k, t), 1 − Pc(p̃k, t)}, for every found object
k (located at p̃k) to evaluate classification uncer-
tainty: Hc(PHc

, p̃k, t) = −Pc(p̃k, t) lnPc(p̃k, t) − (1 −
Pc(p̃k, t)) ln(1−Pc(p̃k, t)). There are as many scalarHc’s
as there are found objectsk up to timet.

IV. SEARCH AND CLASSIFICATION METRICS

In this section we develop metrics to be used for the
search versus classification decision-making process. We
define the cost of not carrying on further search as

J (t) =

∫

D
Hs(PHs

, q̃, t)dq̃

Hs,maxAD

. (5)

The costJ is proportional to the total integral of the
search uncertainty overD. We divide the integral by the
area of the domainAD multiplied by Hs,max in order
to normalizeJ (t). According to this definition, we have
0 ≤ J (t) ≤ 1. Initially, we haveJ (0) =

Hs(PHs ,q̃,0)
Hs,max

≤

1. If for some ts we haveHs(PHs
, q̃, ts) = 0 for all

q̃ ∈ D, thenJ (ts) = 0 and the entire domain has been
satisfactorily covered and we know with 100% certainty
that there are no objects yet to be found.

For the classification process, let̄No(t) be the number
of objects found by the autonomous sensor vehicle up
to time t. For each found objectj ∈ {1, 2, · · · , N̄o(t)},
define the classification metricHd(p̃j , t) to be

Hd(p̃j , t) = ǫcJ (t), (6)

whereǫc is a preset upper bound on the desired uncertainty
level for classification.

Let us define the classification conditions as follows:













‖q(t) − p̃j‖ ≤ rc (a)
Hc(PHc

, p̃j , t) > Hd(p̃j , t) (b)
Ps(p̃j , t) ≥ πU (c)

No Decision about Oj from tcj up to t (d)

,

where πU
1 is some lower bound on the probability of

object presence to be met before a classification task can
be carried on. The time quantitytcj indicates the time
instant at which the current classification loop begins.
Only when all the classification conditions are satisfied,
i.e., (a) the objectj is within the vehicle’s classification
sensory range, (b) the classification uncertainty ofj is
larger than the desired uncertainty, (c) the probability of
object present for this point is higher than some boundary
probability, and (d) no decision has yet been made about
the property ofj from the beginning of this classification
loop up to timet, then the vehicle will start to classifyj.
If any one of the above condition fails, the vehicleV stops
classifying the found object and switches to searching
again. It can resume classifying an object that has been
detected and completely or partially classified in the past
if it finds it again during the search process. When this
occurs, the value ofHd will be smaller than the last time
the object has been detected.

V. COST-AWARE SEQUENTIAL DECISION-MAKING

Assuming a Uniform Cost Assignment (UCA) [9], we
define the decision cost component asCij = 1, i 6=
j, Cii = 0, where i = 0, 1 represent deciding object
absent (i = 0) and deciding object present (i = 1) and
j = 0, 1 correspond to stateXs(q̃) = 0 andXs(q̃) = 1,
respectively. HenceCij is the cost of decidingi when the
state isj.

Let R̃0(q̃, L, ∆), L ≥ 1, be the conditional Bayes risk
of deciding there is an object at̃q given that there is
actually none over at least one observation,

R̃0(q̃, L, ∆) = cT
0 ∆b0, c0 = [C00 C10]

T . (7)
The quantityb0 is the first column of the general condi-
tional probability matrixBs and contains the probabilities
of having zero (Zs = 0) to L (Zs = L) positive
observations when there is nothing atq̃. The quantity∆ is
a deterministic decision rule. ForL ≥ 1, ∆ is a2×(L+1)
matrix. The number2 is the number of possible final
decisions in this case, corresponding to “object absent”
and “object present”, respectively. The quantityL ≥ 1
is the number of observations that one can make over
a window of L time steps, and the first to(L + 1)th

columns in the∆ matrix correspond to zero toL positive
observations. The element∆l

i, i = 0, 1, l = 0, 1, · · · , L

can be either0 or 1, and
∑1

i=0 ∆l
i = 1. If ∆l

i = 1,
it means that the vehicle will make decisioni given
there arel positive observations. Therefore,∆ can have
2L+1 different matrix values. WhenL = 0, i.e., there is

1Note thatπU is a variable with respect tõq andt. We will elaborate
it in Section V.



no observation taken,∆ could be either “always decide
there is an object” or “always decide there is no object”,
regardless of the observations, and there will be no explicit
matrix form for ∆.

Similarly, the conditional Bayes risk
R̃1(q̃, L, ∆) = cT

1 ∆b1, c1 = [C01 C11]
T (8)

gives the cost of deciding that there is no object atq̃ given
that there is actually something overL ≥ 1 observations.

In this paper, we assume that the sensor is a “good”
one, that is to say, the detection probability is higher
than the error probability of the sensor, i.e.,βs > 0.5.
Therefore, there are only a small number of “reasonable”
deterministic decision rules. GivenL observations, the set
of “reasonable” deterministic decision rules is the set of
all rules of the type

∆l
1 =

{

1 l ≥ v

0 otherwise
where l ∈ {0, . . . , L} is the total number of positive
observations andv ∈ {0, . . . , L + 1} is the threshold
where we make a positive decision. Note that “reasonable”
decision rules grows linearly withL and dominates any
other type of decision rules with the same value ofL.

Therefore, under UCA, there is no cost if the decision
is the actual state, and the conditional riskR̃0(R̃1) can be
interpreted as the error probability of deciding there is an
(no) object given that there is actually none (one) under a
certain decision rule∆ over L observations for point̃q.

Now let us assign each observation a costcobs(t).For
both the search and classification processes, we define a
dynamic observation costcobs that depends on how much
more search uncertainty there remains to be eliminated:
cobs(t) = γJ (t), whereγ > 0 is some constant. That is
to say, at the outset of the mission with a relatively high
value ofJ , the observation cost is high since there are still
many uncovered points in the domain and it is “expensive”
to make an observation at the point being observed. The
cost-aware Bayesian sequential decision-making strategy
tends to make a decision with a few observation samples
in that case, which may yield large number of false
detections and missed detections. When the vehicle has
surveyed most points in the domain, both the uncertainty
and the observation cost decrease. The vehicle is able
to revisit some already searched/classified points to take
observations again and make better decisions with lower
uncertainty. The process is repeated untilJ (t) → 0 for the
search task, and the classification metricHc < Hd, ∀p̃k ∈
P is satisfied for the classification task.

At every time step, the vehicle has to choose to (i)
decide object present, (ii) decide object absent or (iii) take
one more observation and postpone making any decisions
regarding object presence to the following time step. This
same decision procedure is repeated until the cost of
making a wrong decision based on the current observation
is less than that of taking one more observation for a pos-
sibly better decision. The cost-aware sequential Bayesian
decision-making strategy is such that the Bayes risk at

each time step is minimized. Denoteφ = {φk}
∞
k=0 to be

the stopping rule andδ = {δk}
∞
k=0 the terminal decision

rule. If φk = 0, we take another measurement, ifφk = 1,
we stop taking further observations. At every time step
k, the quantityδk can be either one of three possibilities:
decide object present, decide object absent or take one
more observation. However, note that the final decision is
either object present or absent. Define the stopping time
asN(φ) = min{k : φk = 1}, which is a random variable
due to the randomness of the observations. The expected
stopping time under stateXs(q̃) = j is then given by
Ej [N(φ)] = E[N(φ)|Xs(q̃) = j].

Since now we assign a costcobs for each observation,
the conditional Bayes risk (7,8) under UCA overL ≥ 0
observations can be modified to be:
Ri(q̃, L, ∆) = Prob(decideXs(q̃) = j|Xs(q̃) = i)

+ cobsEi[N(φ)], i, j = 0, 1. (9)
If L ≥ 1, ∆ has explicit matrix form and we can further
rewrite the above equations as:

Ri(q̃, L, ∆) = cT
i ∆bi + cobsEi[N(φ)], i = 0, 1. (10)

Define the Bayes risk as the expected conditional Bayes
risk of making a wrong decision under decision rule∆
for L ≥ 0:
r(q̃, L, π1, ∆) = π0R0(q̃, L, ∆) + π1R1(q̃, L, ∆), (11)

where π1 = Ps(q̃, t = tv) is the prior probability of
object present at point̃q andπ0 = 1− π1 gives the prior
probability of object absent. Here,tv is the time instant
when the point̃q is visited. Note that the prior is a fixed
number ranging from0 to 1 at time tv and is used to
construct the minimum Bayes risk curve over all possible
lengths of observations. Fix aπ1 ∈ [0, 1], the minimum
Bayes risk curve at this particular prior has the minimum
r value over all possible choices of∆ with L ≥ 0.

If the sensor does not take any observations (L =
0) and directly makes a decision, the Bayes risks
corresponding to the21 = 2 different decision
rules ∆ are as follows: r(q̃, L = 0, π1, ∆ =
always decide there is an object) = 1−π1, andr(q̃, L =
0, π1, ∆ = always decide there is no object) = π1.

If the sensor takes an observation (L = 1) at t = 0, the
minimum Bayes risk over all possible choices of∆ is

rmin(q̃, L = 1, π1) = min
∆∈GL

(1 − π1)R0(q̃, L = 1, ∆)

+π1R1(q̃, L = 1, ∆) ≥ cobs(1)
whereGL is defined as the set of all deterministic decision
rules that are based on exactlyL observations (Here,L =
1 since we have only taken one observation).

Following the same procedure, compute the minimum
Bayes risk functions under different observation numbers
and the overall minimum Bayes risk over all decision rules
(L ≥ 0) is: r∗min(q̃, π1) = minL=0,1,2,... rmin(q̃, L, π1).

The basic idea of the cost-aware sequential Bayesian
decision-making method is as follows: With an initial
prior probability of object presencePs(q̃, t), check its
correspondingr∗min value in the overall minimum Bayes
risk curve. Ifr∗min(q̃, π1) is given by the line withL ≥ 1,
the Bayes risk is lowered by taking an observationYs,t,



compute the posterior probabilityPs(q̃, t+1) according to
Equation (3) and again check its corresponding minimum
Bayesian riskr∗min(q̃, π1) to make decision. That is, an
observation is taken if and only if the priorπ1 = Ps(q̃, t)
is such thatrmin(q̃, L ≥ 1, π1) < min(π1, 1 − π1). The
same procedure is repeated until the Bayes risk of the
taking one more observation is higher than the cost of
making a wrong decision. That is to say,r∗min is given by
r(q̃, L = 0, π1, ∆).

Let us illustrate the detailed scheme by the following
simple single point simulation.

VI. SIMULATION FOR A SINGLE POINT

In this simulation, we fix a point̃q, chooseβs = 0.8,
and set the observation cost as a fixed numbercobs = 0.05
to demonstrate the sequential Bayesian-based decision
rule. Figure 1(a) shows all the Bayes risk functionsr

under 0 (black lines),1 (blue lines) or2 (green lines)
observations withπ1 ∈ [0, 1]. In Figure 1(b), the red
line segments indicate the overall minimum Bayes risk
r∗min(q̃, π1). Here, we only list the equation of the lines
that constitute these red line segments. The Bayes risk
functions under more than3 observations (L ≥ 3) have
larger r values and do not contribute tor∗min(q̃, π1) for
the particular choice ofβs andcobs here.
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Fig. 1. (a) Bayes Risk Functions under0, 1, 2 observations; (b)
Minimum Bayes Risk Function.

The following are the expressions for the lines in Figure
1(b) annotated by the numerals1 − 5.
Line 1. This line represents the decision rules without any
observation. Always decide there is an object at the cell re-
gardless of the observations. According to Equation (11),
r(q̃, L = 0, π1, ∆ = always decide there is an object).
Line 2. This line also represents the decision rules with-
out any observation. Always decide there is no object
regardless of the observations:r(q̃, L = 0, π1, ∆ =
always decide there is no object) = π1.

Line 3. The blue line corresponds to the decision rule
3 after taking one observation: decide the actual state
according to the only one observation, that is, ifZs = 1,
decide there is actually an object. We haver(q̃, L =
1, π1, ∆ = ∆11) = 1 − βs + cobs.

Line 4. This line gives the decision rules after two
observations. Line 4 corresponds to the decision rule that
decides there is actually an object if and only if all the two
observations are positive (Zs = 2). Following the same
procedure as above, we haver(q̃, L = 2, π1, ∆ = ∆21) =
(1− βs)

2(1− π1) + (2βs(1− βs) + (1− βs)
2)π1 + 2cobs.

Line 5. This line also gives the decision rules after two
observations. Line 5 corresponds to the decision rule that
decides there is no object if and only if none of the
two observations is object present,r(q̃, L = 2, π1, ∆ =
∆22) = (2βs(1−βs)+(1−βs)

2)(1−π1)+(1−βs)
2π1 +

2cobs.

Thus, the red line segments give the minimum Bayesian
risk r∗min(q̃, π1) over 0,1,2 observations. The intersection
of lines 1, 5 is the lower prior probabilityπL = 0.2059.
When the posterior probability1 − Ps(q̃, t) updated
through Equation (3) is belowπL (i.e., Ps(q̃, t) ≥ πU , an
example of the boundary probability for the classification
condition (c) in Section IV), the vehicle stops taking
observation and decide that the actual state is object
present. The intersection of lines 2, 4 is the upper prior
probabilityπU = 0.7941. When1−Ps(q̃, t) is aboveπU ,
the vehicle decides that there is actually no object.

VII. V EHICLE MOTION CONTROL

In this section, we summarize the main results of the
search control strategy presented in [11]. We will consider
a motion control strategy for the vehicle that guarantees
finding all objects inD (i.e., achieveJ → 0) with the
minimum Bayes risk at every time step.

Let the controlu(t) be restricted to a setU . Based on
this constraint on the control, we define the set of points
in W reachable from the current location of the vehicle
at time t as QW(t) = {q̃ ∈ W : q̃ − q(t) ∈ U}. We
use a control law that drives the vehicle to some point
q̃ ∈ QW(t) that has the highest uncertainty, and switch to
a perturbation control law when the vehicle is trapped in
a region where no such point exists. Let us first consider
the following condition, whose utility will become obvious
shortly.

Condition C1. Hs(PHs
, q̃, t) ≤ ǫ, ∀q̃ ∈ QW(t), where

ǫ is a preset threshold of some small value.
Consider the following control law

u
∗(t) =

{

ū(t) if C1 does not hold
¯̄u(t) if C1 holds

(12)

where ū(t) is the nominal control law, and ¯̄u(t) is the
perturbation control law.

The nominal control law is set to bēu(t) = q̃⋆(t +
1)− q(t) ∈ U , whereq̃⋆ is the point that has the highest
uncertainty withinQW(t). This choice for the nominal
control law is inspired by the nominal control law in [12].
If Condition C1 holds, then the perturbation controller
¯̄u(t) is used: ¯̄u(t) = −¯̄k(q(t) − q̃

∗), where0 < ¯̄k ≤ 1
is the controller gain, and̃q∗ ∈ QD(t) := {q̃ ∈ D :
q̃ − q(t) ∈ U} such thatHs(PHs

, q̃∗, t) > ǫ. We assume
that U is such thatQD(t) = D for all time t. The
controller is used to drive the vehicle out of the region
with low uncertaintyǫ to someq̃

∗ ∈ QD(t) such that
Hs(PHs

, q̃∗, t) > ǫ, if such a point exists.
VIII. S IMULATION

In this simulation, we consider all the points̃q within
a 20× 20 square domainD. For each̃q ∈ D, we assume
an i.i.d. prior probability of object presence equals to



Ps(q̃, 0) = 0.2. The number and locations of the objects
are randomly generated. The number of objects generated
for this simulation turns out to be70 with locations as
indicated by the magenta dots in Figure 2. The radiusrs

of the search sensor is chosen to be8 and the classification
radius rc is chosen to be6, as shown by the magenta
and green circle in Figure 2. The black dot represents
the position of the vehicle. Figure 2 shows the evolution
of Hs. From Figure 2(d), we can conclude that at most
Hs = 1.1 × 10−8 has been achieved everywhere within
D. In this case, we set the maximum sensing capacity as
M = 0.5. The parameterγ = 0.05. For the classification
process, let the desired upper bound for classification
uncertainty beǫc = 0.01. The priorsPc(q̃, 0) = 0.5 and
all the objects with even number have property “F”. Here
we use the control law in equation (12) with control gain
¯̄k = 0.2. The setU is chosen to beD.

Figure 3(a) shows the number of false and missed
detections versus time. The number of missed detections
(22) is much larger than that of false detections (2) at t =
0. This is because the initial prior probabilityPs(q̃, 0) we
start with is closer to zero, which makes it easier to have a
wrong decision with one negative observation given that
the actual state is object present. The simulation results
also suggest that the number of incorrect classifications for
the two properties are similar and this is because we have
Pc(q̃, 0) = 0.5. As time increases, both error numbers
decrease to zero with zero uncertainty at the end of the
task. This implies that we can balance the number of errors
within the tolerance range and the limited time we have
to decide when to stop.
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Fig. 2. Uncertainty map (dark red for highest uncertainty and dark blue
for lowest uncertainty) at (a)t = 1, (b) t = 120, (c) t = 280, and (d)
t = 360 (with initial uncertaintyHs(Ps(q̃, 0)).

Figure 3(b) shows the property of object3, which
eventually has zero probability of having Property “F”
with zero uncertainty, i.e., we are100% sure that object
3 has Property “G”. Similar high certainty results were
obtained for all other objects.
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Fig. 3. (a) Number of false and missed detections, and (b) Probability of
object 3 having Property “F” and the corresponding uncertainty function
Hc.

IX. CONCLUSION

Based on a Bayesian probabilistic framework, a
decision-making strategy was developed to guarantee the
detection and classification of all objects in a domain
using Bayesian risk analysis. Future research will focus
on locating and classifying dynamic objects with multiple
autonomous sensor vehicles. The question of unknown
environment geometries (i.e., unknownD) will also be
addressed. Objects with uniform distributions over the
domain will be investigated, where the decision-making
at one point is affected by all the decisions made at other
points. SPRT method will also be investigated for the cases
where no prior information is available.

REFERENCES

[1] J. R. Spletzer and C. J. Taylor, “Dynamic Sensor Planningand
Control for Optimally Tracking Targets,”The International Journal
of Robotics Research, no. 1, pp. 7–20, January 2003.

[2] L. F. Bertuccelli and J. P. How, “Robust UAV Search for Envi-
ronments with Imprecise Probability Maps,”Proceedings of the
44th IEEE Conference on Decision and Control, and the European
Control Conference, December 2005.

[3] ——, “Bayesian Forecasting in Multi-vehicle Search Operations,”
AIAA Guidance, Navigation, and Control Conference and Exhibit,
August 2006.

[4] J. J. Leonard and H. F. Durrant-Whyte, “Simultaneous Map
Building and Localization for an Autonomous Mobile Robot,”
in IEEE/RSJ International Workshop on Intelligent Robots and
Systems IROS ’91, Osaka, Japan, November 1991, pp. 1442–1447.

[5] T. Furukawa, F. Bourgault, B. Lavis, and H. F. Durrant-Whyte, “Re-
cursive Bayesian Search-and-Tracking using Coordinated UAVs
for Lost Targets,”Proceedings of the 2006 IEEE International
Conference on Robotics and Automation, May 2006.

[6] B. Lavis, T. Furukawa, and H. F. Durrant-Whyte, “DynamicSpace
Reconfiguration for Bayesian Search-and-Tracking with Moving
Targets,”Autonomous Robots, vol. 24, pp. 387–399, May 2008.

[7] R. Mahler, “Objective Functions for Bayeisan Control-Theoretic
Sensor Management, I: Multitarget First-Moment Approximation,”
Proceedings of IEEE Aerospace Conference, 2003.

[8] M. Flint, M. Polycarpou, and E. Fernández-Gaucherand,“Coop-
erative Control for Multiple Autonomous UAV’s Searching for
Targets,” Proceedings of the 41st IEEE Conference on Decision
and Control, December 2002.

[9] H. V. Poor, An Introduction to Signal Detection and Estimation,
2nd ed. Springer-Verlag, 1994.

[10] A. Wald, Sequential Analysis. Dover Publications, 2004.
[11] Y. Wang and I. I. Hussein, “Bayesian-Based Decision Making

for Object Search and Characterization,”IEEE American Control
Conference, 2009.

[12] I. I. Hussein, “A Kalman-filter based control strategy for dynamic
coverage control,”Proceedings of the American Control Confer-
ence, pp. 3271–3276, 2007.


