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Abstract— This paper focuses on the development of a
cost-aware sequential Bayesian decision-making stratedygr
the search and classification of multiple unknown objects
within a task domain. Search and classification of multiple
objects of unknown numbers are competing tasks under
limited vehicle and sensory resources. This is because sens
equipped vehicles in the system can perform either the seduc
or classification task but not both at the same time. The
decision of one task over the other may result in missing
other, more important objects not yet found or missing the
opportunity to classify a found critical object. In this paper
we develop a cost-aware sequential Bayesian decision-magi
strategy for search and classification, which results in the
detection and satisfactory classification of all the unknow
objects in the task domain.

|. INTRODUCTION

Brown IIIf, and R. S. Erwih

have been investigated by that time, or equivalently, the
uncertainty level is lower.

We first review some of the related literature. Inspired
by work on particle filtering, in [1] the authors develop
a sensor team configuration control strategy under a
probabilistic framework to get optimal estimates for targe
tracking. In [2], the authors use the Beta distribution
to model the confidence level of target existence for an
unmanned aerial vehicle (UAV) search task in an uncertain
environment. In [3], the above uncertainty measurements
are extended by using the Modified Bayes Factor, and pre-
diction of future measurement is also taken into account to
calculate the possible uncertainty reduction in UAV search
operations. An alternate approach for searching/tradgking

an uncertain environment is simultaneous localization and

In a search and classification mission, an autonomougapping (SLAM) [4].
sensor-equipped vehicle searches for and classifies mulCoordinated search and tracking in a probabilistic
tiple objects distributed over a domain. The objective iframework has been studied mainly for optimal path plan-
a search task is to find each object and fix its positioning in the literature. In [5], the authors investigate sbar
in space. The objective in a classification task is tend-tracking using recursive Bayesian filtering with fore-
observe each found object and collect enough informatigthown targets’ positions with noise. The target may be lost
to classify it. Therefore, search and classification are twand needs to be found again due to measurement noise.
competing demands. A sensor vehicle has to decide dme results are extended in [6] for dynamic search spaces
whether to continue searching or stop and characterizgised on forward reachable set analysis. In [7], the author
once it finds an object. This decision may be very criticaproposes a Bayesian-based multisensor-multitarget senso
in some applications as in search and rescue, where, f@fanagement scheme. The approximation strategy, based
example, finding and analyzing a nonhuman object mayn probability hypothesis densities, maximizes the square
come at the cost of delaying or altogether missing a livef the expected number of targets. With the same objec-
human victim. Conversely, a vehicle may come across tie, in [8] the authors seek to maximize the probability of
human victim and, at the cost of missing it, decides t@inding a target with some foreknown location information
continue the search task. in the presence of uncertainty. It is worth noting that in

When considering the cost of taking each new obsethe above literature there is no explicit decision-making
vation, one may make a decision using a limited numbestrategy for search and tracking.
of observations if the uncertainty is high. This is because, Sequential detection [9] allows the number of observa-
at the outset of the mission, it is costly to keep takingion samples to vary in order to achieve an optimal de-
observations at one specific spot while ignoring a largeision. In our problem, with a relatively high observation
amount of unsurveyed regions in the domain. Undegost at the beginning of the mission, it is wise to make
these scenarios, the vehicle will make temporary decisiorscrude decision with fewer observations first, and return
based on the currently available observations, which may update the decision later when the cost is low. The
lead to relatively large error probabilities of the deasio Baysian sequential detection method used in this paper is
made, but can come back later when the observatigiuch that the Bayes risk (to be formally defined in Section
cost is lower because more regions of the domain would) is minimized in each time step. Another sequential
detection method is the Sequential Probability Ratio Test
(SPRT) [10], [9] based on Neyman-Pearson formulation
where no prior probability information is needed.
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an uncertainty map for the search process is built basethservation, and corresponds to a positive one taken at
on the probability of object presence over the domain. Aoint q.
classification uncertainty function is also defined for each Conditioned on the stat& ;(q) at a particular poing,
found object. Based on the uncertainty function, we definiet ¢ be time index, the observations ;(q) taken along
metrics for search and classification in Section IV. Irtime are temporally i.i.d. Therefore, if take an observatio
Section V, we develop the cost-aware sequential Bayesiah each time step af, for a window of L time steps,
decision-making strategy. To illustrate the performanfce dhere will be L + 1 different combinations of unordered
our approach, in Section VI we provide a simulation forscalar observations, that is, ranging from zero positive
a single cell in a search task. The algorithms for motiombservation tal. positive ones. Let the variablg,(q) be
control of the autonomous vehicle is developed in Sectiotihe number of positive observations at paiptwhich is a
VIl and a full-scale simulation over the entire missionnumber in the sef0,--- , L}. The following (L + 1) x 2
domain for search versus classification is presented imatrix gives the general conditional probability matrix fo
Section VIII. We conclude the paper with a summary othe search task: . .
current and future work in Section IX. Bs (1=7)

L(l - Bs)ﬁsLil Lﬂs(l - 65)1171

[l. SETUP AND SENSORMODEL B, =

Let D Cc R? be a domain in which objects to be

found and classified are located. L&tbe an arbitrary h is th i f the B ial distributi
point in D. Assume there aréVi,; cells inD. Let 1 < where j; is the parameter of the Binomial distribution

Ny < Nyt be the number of objects, which are spatially(L’BS)’ which desc_ribes the sensor probability of making
i.i.d. overD. Denote the position of the static objedt, > correct observation. The matrix eleme, );; corre-

j € {1,2,...,N,} asp,; and P as the set of all object sponds to Prol, = i X.(q) = j, i.e., the probability of
positions. BothN, and P are unknown beforehanav, having: positive observations given staje

is a binomial random variable with parameteY¥g,; and The valléethofﬂsb depegds .O? I:he range between _thel
Prok{G € P), where Proby ¢ P) is the probability of sensor and the observed point. Here we assume a simple

object presence at poirif. We assume that there existsmgdel f?rﬁs Ehat '.fha f?r:mh order polynomla:; ;‘)unftlgr; of
a single autonomous sensor-equipped vehicle (denoted by lla(t) — gl within the sensor range, and by, = 0.

. . )
(1 - BS)L ﬂL

V) that performs the search and classification tasks. TIRENErwise, M. (o on2 )

vehicleV satisfies the following simple first order discrete- 3 (s) = Z (S - 7’5) +bn ?f 8§ Ty 2)

time equation of motion o b if s> 7, .
alt+1) = q(t) + u(t), where M, + b, gives the peak value of if q being

whereq € D C R? represents the position af, and observed is located at the sensor vehicle's location. The
u € U C R? is the control input, wheré/ is the set of Sensing capability decreases with range and becanies
allowable controls. At any time, the vehicle can either outside of the limited sensory range.

perform the search task or the classification task, but it is o
not capable of performing both at the same time. B. Sensor Model for Classification

In this work, for both the search and classification In the classification process, Ief.(p;) be a binary
processes, we use a sensor model with Bernoulli distriyate variable for object, where0 corresponds to object
bution, which gives binary outputs for a single observahaving Property “G”, and corresponds to Property “F”.
tion, however, with different observation contents: objec; ot - (1) be a binary observation variable, whete
“present” or “absent” for search, and property “F” or *G” ¢4 responds to observation showing Property “G”, and
for classification. 1 corresponds to observation showing Property “F”. For
A. Sensor Model for Search a window of L time steps, letZ.(px) be the number

In the search process, leX,(q) be a binary state Of observations showing Property “F" for objett the
variable, where0 corresponds to object absent, and following (Z+1) x 2 matrix gives the general conditional
corresponds to object present. Note that the realizatidgifobability matrix for the classification task:

L L
of X;(q) depends on the position of the observed point Be (1-8e)
q, that is, L(l - 50)55_1 LﬁC(l - ﬁc)L_l

N B, —
|1 qeP, ¢ : :
Xs(q) = { 0 otherwise. 1 _'5 L 7

SinceP is unknown and randonk’,(q) is a random vari- e yajue 'of 3, follows the some form ass, but with
ab!e with res_pect tol every € D _Slncg we assume that the parameters\/, andr.

objects are immobileX(q) is invariant with respect to

time. Define the observation indicating object present as a
positive observation and the observation indicating dbjec

absent as a negative observation. gtq) be a binary |y this section, we summarize the main algorithms
observation variable, wher@ corresponds to a negative presented by the authors in [11].

BAYESIAN UPDATES AND UNCERTAINTY MAP



A. Bayesian Updates for Search and Classification wheree.. is a preset upper bound on the desired uncertainty
For the search process, the general update equation feye! for classification.

the probability of object presence is:( | Let us defin(ﬁ(;?g claf)ss|,|ifi§artion conditions(gs follows:
~ ~ ﬁsps q,t L Rl = c

Ps(q,t+1) = s, = = H.(Py, ,p;,t) > H, it b
@D =l 35 P D -5 - P@o+1 Py font) 2 Malbrt) ()

1_ s Ps ~,t ..

(1 = st (@) > p( - tﬁ )Ps(q 1)0 — (3) No Decision about O; from t.; up to ¢ (d) N

h . Ih Bs st(qvl )+|.5st‘f S(?fh) d _whereny; 1 is some lower bound on the probability of

W ereysyt(q) IS the actual realization of 'ne random Var"object presence to be met before a classification task can

_ablg ¥s4(a). Note t~hat the probability of object absencebe carried on. The time quantity.,; indicates the time

Is given byl — P.S(q’.tJr D instant at which the current classification loop begins.
For the classification process, the general update eq

. " ) . nly when all the classification conditions are satisfied,
tion for the probability of a found objeéthaving property i.e.,y(a) the objecy is within the vehicle’s classification

“F"JS: B BeP.(Pk,t) sensory range, (b) the classification uncertainty; af
P.(pr,t+1)= yc,t(Pk)%cPc(f)k t) — Bo — Puo(bi,t) + 1 larger than the desired uncertainty, (c) the probability of
(1—B.)P Ef)k ) ’ object present for this point is higher than some boundary

(4) probability, and (d) no decision has yet been made about
the property ofj from the beginning of this classification
loop up to timet, then the vehicle will start to classify.
If any one of the above condition fails, the vehitlestops

For the search process, we use the information entropyassifying the found object and switches to searching
funCtion Of the probablllty diStribution Of Object presmc again' It can resume C|assifying an Object that has been
to construct an uncertainty map over the search domaigetected and completely or partially classified in the past
The uncertainty map will be used to guide the vehiclef it finds it again during the search process. When this

to regions of high uncertainty in the search domain. Weccurs, the value ofl; will be smaller than the last time
define the information entropy distribution for discretethe object has been detected.

probability distribution Py, = {Ps(q,t),1 — Ps(q,t)}
(i.e, Py, is the probability distribution for object present

+(1 — ye.t(P — — .
( Y ,t(pk)) _26¢:P.c(pkat) +ﬁc+Pc(pkat)
The probability of having property “G” i$— P.(pg, t+1).

B. The Uncertainty Map

V. COST-AWARE SEQUENTIAL DECISION-MAKING

and absent) afj at each time step as Hy;(Py,,q,t) = Assuming a Uniform Cost Assignment (UCA) [9], we

—Ps(q,t)In Ps(q,t) — (1 — Ps(@,t)) In(1 — Ps(q,1t)). define the decision cost component @ = 1, i #
For the classification process, we define a simj, C;; = 0, wherei = 0,1 represent deciding object

ilar entropy function H.(Py_,px,t), with Py~ = absent{ = 0) and deciding object present & 1) and

{P.(Px,t),1 — P.(px,t)}, for every found object j = 0,1 correspond to stat&’,(q) = 0 and X,(q) = 1,

k (located at p,) to evaluate classification uncer-respectively. Henc€;; is the cost of deciding when the
tainty: H.(Pu,,pk,t) = —P.(Pk,t) In P.(Py,t) — (1 —  state isj.

P.(pg,t)) In(1—P.(pg, t)). There are as many scalBt.'s Let Ro(q, L,A),L > 1, be the conditional Bayes risk

as there are found objecksup to timet. of deciding there is an object & given that there is
IV. SEARCH AND CLASSIFICATION METRICS actually none over at least one observation,
Ro(q, L, A) = CgAbo, Co = [CQ() Clo]T. (7)

In this section we develop metrics to be used for thq.he

search versus classification decision-making process. We quanutyblol 's the _f|rst column Of. the general C.O.r?d"
define the cost of not carrying on further search as tional probability matrixB, and contains the probabilities

[ Ho(Pr,,q,)dq of having zero £, = 0) to L (Z, = L) positive

J(t) =2 IS{ ’A’ : (5) observations when there is nothingigtThe quantityA is
s,max<1D . L .. .

The costJ is proportional to the total integral of the & deterministic decision rule. Fdr> 1, Ais a2x (L+1)

search uncertainty oveéP. We divide the integral by the Matrix. The number2 is the number of possible final
area of the domaimp multiplied by H, ... in order decisions in this case, corresponding to “object absent”
to normalize.7 (). According to this definition, we have @nd “object present’, respectively. The quantity> 1

0 < J(t) < 1. Initially, we haveJ(0) = H.(Py,,a0) ~ IS the number of observations that one can make over
L If for some t. we 'haveH (Pa. i, 1) fs'(r)nai‘(or al @ window of L time steps, and the first tOL + 1)

61' €D then j(;) ~ 0 and t;\e gnﬂ(rlé éomain has beenCO|umnS in theA matrix correspond to zero tb positive

, $) = . 1 —

satisfactorily covered and we know with 100% certaint)g gr‘:’etraveatleci)tzse. rOTr(])? fle;%mff N A(} 17’ ll_lf()’i’l - ’lL
that there are no objects yet to be found. ' =07 P

e o it means that the vehicle will make decisiangiven
For the classification process, 18%,(¢) be the number " .
. . there arel positive observations. Thereforéd, can have
of objects found by the autonomous sensor vehicle

u 41 A . - . .
to time ¢. For each found object € {1,2,--- , N,(t)}, f different matrix values. Whed = 0, i.e., there is

define the classification metrilly (f)j’ t) to be INote thatrs is a variable with respect t§ andt. We will elaborate
Hq(pj,t) = e T (1), (6) itin Section V.




no observation taken\ could be either “always decide each time step is minimized. Denote= {¢x}7°, to be
there is an object” or “always decide there is no objectthe stopping rule and = {6}, the terminal decision
regardless of the observations, and there will be no expliaiule. If ¢, = 0, we take another measurementgjf = 1,

matrix form for A. we stop taking further observations. At every time step
Similarly, the conditional Bayes risk k, the quantityd, can be either one of three possibilities:
Ri(q,L,A) = cfAbl, c1 = [Co C’H]T (8) decide object present, decide object absent or take one

gives the cost of deciding that there is no objedj ativen more observation. However, note that the final decision is

that there is actually something over> 1 observations. either object present or absent. Define the stopping time
In this paper, we assume that the sensor is a “goodis N(¢) = min{k : ¢, = 1}, which is a random variable

one, that is to say, the detection probability is highedue to the randomness of the observations. The expected

than the error probability of the sensor, i.8, > 0.5. stopping time under stat&(q) = j is then given by

Therefore, there are only a small number of “reasonablefl;[N (¢)] = E[N(¢)|X(q) = j].

deterministic decision rules. Giveinobservations, the set  Since now we assign a cosf,s for each observation,

of “reasonable” deterministic decision rules is the set athe conditional Bayes risk (7,8) under UCA over> 0

all rules of the type observations can be modified to be:
NN ERET: Ri(&L,A) = ProtdecideX,(q) = j|X.(a) = i)
" ]0 otherwise +  copsli[N(¢)], i, =0, 1. ©)
wherel € {0,...,L} is the total number of positive If L > 1, A has explicit matrix form and we can further

observations and € {0,...,L + 1} is the threshold rewrite the above equations as:
where we make a positive decision. Note that “reasonable” R;(q, L, A) = ¢! Ab; + copsEi[N(¢)], i =0,1.  (10)
decision rules grows linearly witl, and dominates any  Define the Bayes risk as the expected conditional Bayes
other type of decision rules with the same valueLof risk of making a wrong decision under decision rule

Therefore, under UCA, there is no cost if the decisiofior L > 0:
is the actual state, and the conditional rigk(R;) can be  r(q,L,m1,A) = moRo(q, L, A) + m Ri(q, L, A), (11)
interpreted as the error probability of deciding there is awhere -y = P,(q,t = t,) is the prior probability of
(no) object given that there is actually none (one) under @bject present at poirj andmy = 1 — m; gives the prior
certain decision rule\ over L observations for poing. probability of object absent. Here, is the time instant

Now let us assign each observation a cagt(t).For when the poing is visited. Note that the prior is a fixed
both the search and classification processes, we defingiamber ranging frond to 1 at time ¢, and is used to
dynamic observation costps that depends on how much construct the minimum Bayes risk curve over all possible
more search uncertainty there remains to be eliminatet&ngths of observations. Fix & € [0, 1], the minimum
cobs(t) = 7T (t), wherey > 0 is some constant. That is Bayes risk curve at this particular prior has the minimum
to say, at the outset of the mission with a relatively high- value over all possible choices df with L > 0.
value of 7, the observation cost is high since there are still If the sensor does not take any observations =
many uncovered points in the domain and it is “expensive)) and directly makes a decision, the Bayes risks
to make an observation at the point being observed. Tlw@rresponding to the2! = 2 different decision
cost-aware Bayesian sequential decision-making strategyles A are as follows: 7(q,L = 0,m,A =
tends to make a decision with a few observation sample@dways decide there is an objeet 1 — 7, andr(q, L =
in that case, which may yield large number of falsé), 7, A = always decide there is no objeet ;.
detections and missed detections. When the vehicle hadf the sensor takes an observatidn<£ 1) att = 0, the
surveyed most points in the domain, both the uncertaintpinimum Bayes risk over all possible choicesAfis
and the observation cost decrease. The vehicle is able'min(q, L = 1,m1) = min (1 —m)Ro(q, L = 1,A)
to revisit some already searched/classified points to take acar

; : ‘e ; +mR1(q, L =1,A) > cops(1)

observations again and make better decisions with IOwerhereg is defined as the set of all deterministic decision
uncertainty. The process is repeated utit) — 0 for the W L

search task, and the classification meliic< Hy, Vpi € rule_s that are based on exacﬂyobservatlons (Herdl, =
. L e 1 since we have only taken one observation).
P is satisfied for the classification task.

; . .. Following the same procedure, compute the minimum
Al every time step, the vehicle has to choose to (Iéa es risk functions under different observation numbers
decide object present, (ii) decide object absent or (ikita Y

: . ._._and the overall minimum Bayes risk over all decision rules
one more observation and postpone making any decisio

T ok ~ N (&
regarding object presence to the following time step. ThiEfTieO)bIZ.sigmiiag; 7;) tﬁengtr)létfgw;}”é grrga&%’njiiglééyesian
same decision procedure is repeated until the cost 81‘

. . .decision-making method is as follows: With an initial
making a wrong decision based on the current observation. o ) ~ .
. . . rior probability of object presenc®;(q,t), check its
is less than that of taking one more observation for a pos- o : e
. - . .corresponding* . value in the overall minimum Bayes
sibly better decision. The cost-aware sequential Bayesian min_ . : .
(q, 1) is given by the line withL, > 1,

- . : . Iisk curve. Ifr¥ .
decision-making strategy is such that the Bayes risk ?}te Bayes ri;ii“?s lowered by taking an observatidn



compute the posterior probabilify;(q, ¢+ 1) accordingto Line 5. This line also gives the decision rules after two
Equation (3) and again check its corresponding minimurabservations. Line 5 corresponds to the decision rule that
Bayesian riskr ;. (q,m1) to make decision. That is, an decides there is no object if and only if none of the
observation is taken if and only if the prias = P;(q,t) two observations is object presentq, L = 2,7, A =

is such thatTmin(q,L > 1,71'1) < Hlin(ﬂ'l, 1-— 7T1). The AQQ) = (265(1—65)4-(1—ﬁS)Q)(l—ﬂ'l)—i-(l—ﬁs)Qﬂ'l—|—
same procedure is repeated until the Bayes risk of thigps

taking one more observation is higher than the cost of Thus, the red line segments give the minimum Bayesian

making a wrong decision. That is to say,;, is given by risk r%, (q,71) over 0,1,2 observations. The intersection

r(q, L =0,m1,A). of lines 1, 5 is the lower prior probability;, = 0.2059.
Let us illustrate the detailed scheme by the followingVhen the posterior probabilityi — P.(q,¢) updated
simple single point simulation. through Equation (3) is below;, (i.e., Ps(q,t) > 7y, an

example of the boundary probability for the classification

condition (c) in Section IV), the vehicle stops taking
In this simulation, we fix a poin§, chooses; = 0.8, observation and decide that the actual state is object

and set the observation cost as a fixed nunabgr= 0.05 present. The intersection of lines 2, 4 is the upper prior

to demonstrate the sequential Bayesian-based decisigibbability m;; = 0.7941. When1 — P,(q, t) is aboveny,

rule. Figure 1(a) shows all the Bayes risk functions the vehicle decides that there is actually no object.

under0 (black lines),1 (blue lines) or2 (green lines) VIl. VEHICLE MOTION CONTROL

observations withr; € [0,1]. In Figure 1(b), the red

X - S . In this section, we summarize the main results of the
line segments indicate the overall minimum Bayes risk . ) .
PN . . .~ “search control strategy presented in [11]. We will consider
ri..(@,m). Here, we only list the equation of the lines

that constitute these red line segments. The Bayes ri%‘ﬁg\iﬁm;|ng-t;?;|t:tirna7t)e%yefora?h?e\\/,:tycﬁ t(f)\;’;\ tw?tLrlla[ﬁgtees
functions under more tha® observations [, > 3) have g J .

. - minimum Bayes risk at every time step.
larger 7 _values an_d do not contribute 1q,, (g, m) for Let the controlu(t) be restricted to a sé¥. Based on
the particular choice off; and cqps here.

this constraint on the control, we define the set of points
in W reachable from the current location of the vehicle

attimet asQw(t) = {q € W: q—q(t) € U}. We

use a control law that drives the vehicle to some point
a € 9w (t) that has the highest uncertainty, and switch to
. a perturbation control law when the vehicle is trapped in
a region where no such point exists. Let us first consider
L ~ ) the following condition, whose utility will become obvious

2 o o6 o8 1 o [ o o6
prior 1 — 7y prior 1 — 7y

(@ (b) shortly.

Fig. 1. (a) Bayes Risk Functions undér 1,2 observations; (b) it =~ < ~
Minimum Bayes Risk Function. Cpndltlon Cl. Hi(Pn,;q,t) <¢ V4 € Qw(t), where
e is a preset threshold of some small value.

The following are the expressions for the lines in Figure Consider the following control law
1(b) annotated by the numerals- 5. «py _ J u(t) if C1 does not hold 12
Line 1. This line represents the decision rules without any o u(t) i olds o
observation. Always decide there is an object at the cell rd¥Nere u(t) is the nominal control law and u(t) is the
gardless of the observations. According to Equation (11p€rturbation control law. ) .
"@L = 0,m,A = always decide there is an objpct _'he nominal control law is set to b&(t) = G.( +
Line 2. This line also represents the decision rules with!) — d(?) € U, whereq, is the point that has the highest

out any observation. Always decide there is no objed{nCertainty withinQyy(t). This choice for the nominal
regardless of the observations(@,L = 0,71,A = control law is inspired by the nominal control law in [12].

always decide there is no objget 7. If Condition C1 holds, then the perturbation controller

Line 3. The blue line corresponds to the decision rule}:l(t) is used:a(t) :,_k(q(q — '), where0 < ksl
3 after taking one observation: decide the actual statg e controller gain, andi” € Op(t) := {q € D :
according to the only one observation, that isZif=1, 9~ q(t) € U} such thattl,(Pp,, q",t) > e. We assume

decide there is actually an object. We hawe, L — hat¥ is such thatQp(t) = D for all time ¢. The
L, A=An) =1 — B+ cops controller is used to drive the vehicle out of the region

Line 4. This line gives the decision rules after twoWlth low uncertaintye to someq” € Qp(t) such that

observations. Line 4 corresponds to the decision rule th&ts(Fr.. @ 1) > ¢, if such a point exists.

decides there is actually an object if and only if all the two VIHI. SIMULATION

observations are positiveZ( = 2). Following the same In this simulation, we consider all the poingswithin
procedure as above, we havg), L = 2,71, A = A1) =  a20 x 20 square domairD. For eachq € D, we assume
(1= Bs)2(1 —m1) + (28s(1 — Bs) + (1 — Bs)?)m1 + 2cops ~ @n i.i.d. prior probability of object presence equals to

V1. SIMULATION FOR A SINGLE POINT

Bayesian Riskr
Bayesian Riskr




P,(q,0) = 0.2. The number and locations of the objects :

are randomly generated. The number of objects generatec

for this simulation turns out to b&0 with locations as o

indicated by the magenta dots in Figure 2. The radius )

of the search sensor is chosen taStand the classification i J L
. . spoly -y P os

radiusr. is chosen to be&, as shown by the magenta MNLH " o

and green circle in Figure 2. The black dot represents * = = = = = = = v e o m = w

the position of the vehicle. Figure 2 shows the evolution @) . _ ®) N

of H,. From Figure 2(d), we can conclude that at moslf|g. 3. (a) Number of false and missed detections, and (aibty of

s = ! . ... _Object 3 having Property “F” and the corresponding uncetyafunction

H, = 1.1 x 107° has been achieved everywhere withing,

D. In this case, we set the maximum sensing capacity as

M = 0.5. The parametety = 0.05. For the classification

process, let the desired upper bound for classification IX. CONCLUSION

uncertainty bee, = 0.01. The priorsP.(q,0) = 0.5 and  Based on a Bayesian probabilistic framework, a
all the objects with even number have property “F". Hergjecision-making strategy was developed to guarantee the
we use the control law in equation (12) with control gairyetection and classification of all objects in a domain
k =0.2. The set{ is chosen to beD. using Bayesian risk analysis. Future research will focus
Figure 3(a) shows the number of false and missegn |ocating and classifying dynamic objects with multiple
detections versus time. The number of missed detectioggtonomous sensor vehicles. The question of unknown
(22) is much larger than that of false detectioBy4tt =  environment geometries (i.e., unknow?) will also be
0. This is because the initial prior probabilify;(q,0) we  addressed. Objects with uniform distributions over the
start with is closer to zero, which makes it easier to have §omain will be investigated, where the decision-making
wrong decision with one negative observation given thait one point is affected by all the decisions made at other

the actual state is object present. The simulation resulints. SPRT method will also be investigated for the cases
also suggest that the number of incorrect classifications fg/here no prior information is available.

the two properties are similar and this is because we have

P.(q,0) = 0.5. As time increases, both error numbers
] J. R. Spletzer and C. J. Taylor, “Dynamic Sensor Planrang

decreas_e .tO Z,ero with zero uncertainty at the end of thél Control for Optimally Tracking TargetsThe International Journal

task. This implies that we can balance the number of errors  of Robotics Researcmo. 1, pp. 7—20, January 2003.
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