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Abstract—This paper considers the problem of jointly de-
coding binary messages from a single distant transmitter to
a cooperative receive cluster. The nodes in the receive cluster
exchange information to decode messages from the transmitter.
The outage probability of distributed reception with binary hard
decision exchanges is compared with the outage probability
of ideal receive beamforming with unquantized observation
exchanges. Low-dimensional analysis and numerical results show,
via two simple but surprisingly good approximations, that the
outage probability performance of distributed reception with
hard decision exchanges is well-predicted by the SNR of ideal
receive beamforming after subtracting a hard decision penalty of
slightly less than 2 dB. These results, developed in non-asymptotic
regimes, are consistent with prior asymptotic results (for a large
number of nodes and low per-node SNR) on hard decisions in
binary communication systems.

Index Terms—distributed reception, cooperative communica-
tions, beamforming, outage probability

I. INTRODUCTION

We consider the distributed reception scenario in Fig. 1 with
a single distant transmitter and a cluster of k receive nodes.
The goal is to communicate messages over the forward link
from the distant transmitter to all of the receive nodes. The
receive nodes form a fully-connected network and can reliably
exchange information to jointly decode the messages from
the distant transmitter, i.e., the receive cluster can perform
distributed reception.
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transmitter fully-connected

receive cluster

forward link

Fig. 1. Distributed reception scenario.

Recent information theoretic studies [1]–[4] have shown
that distributed reception techniques have potential to increase
diversity, improve capacity, and improve interference rejection,
even with tight network throughput constraints. Several tech-
niques have been proposed to achieve these gains including

This work was supported by the National Science Foundation awards CCF-
1302104 and CCF-1319458.

link-layer iterative cooperation [5], [6], distributed iterative
receiver message-passing [7], and most-reliable/least-reliable
bit exchange iterative decoding [8]–[13]. A limitation of all
of these techniques is that they are based on iterative trans-
missions and decoding. As such, the backhaul requirements
are variable and the decoding latency can be significant if the
number of iterations is large.

A non-iterative distributed reception technique was recently
considered in [14] for the case of a binary modulated forward
link. Unlike the most-reliable/least-reliable bit exchange tech-
niques in which information is transmitted over the network
based on requests from other receivers, the approach in [14]
is for some or all of the receive nodes to quantize each
demodulated bit (prior to decoding) and then broadcast all of
these quantized values to the other receivers in the cluster. The
locally unquantized information at each receive node is then
combined with the quantized information from other receive
nodes for subsequent decoding. Numerical results showed
that the outage probability penalty of exchanging binary hard
decisions rather than unquantized observations (ideal receive
beamforming) was less than 1.5 dB in the cases considered.

In this paper we analyze the outage probability of distributed
reception with hard decision exchanges in the case of a
binary modulated forward link and independent and identically
distributed Rayleigh fading forward link channels. Unlike [14]
where locally unquantized information at each receive node is
combined with the quantized information from other receive n-
odes, we make the simplifying assumption that all observations
are either quantized (distributed reception with hard decision
exchanges) or unquantized (ideal receive beamforming). The
performance of ideal receiver beamforming depends only on
the norm of the vector channel from the transmitter to the
receivers, with outage occurring when this norm falls below
a threshold corresponding to the particular coded modulation
strategy used. While a closed-form expression for the out-
age probability of distributed reception with hard decision
exchanges appears intractable, low-dimensional analysis and
numerical results lead to simple yet accurate approximations
that depend only on the norm of the vector channel. Thus,
the performance of distributed reception with hard decision
exchanges tracks that of ideal receive beamforming, except
for a hard decision penalty. This penalty is slightly less than



2 dB in the cases considered, consistent with prior results on
the penalty of hard decisions in binary communication systems
[15]–[17].

II. SYSTEM MODEL

The forward link complex channel from the distant transmit-
ter to receive node i is denoted as gi for i = 1, . . . , k and the
vector channel is denoted as g = [g1, . . . , gk]

⊤. Given a real-
valued channel input

√
EsX with E[X] = 0, var[X] = 1 and

Es denoting the energy per forward link symbol, the phase-
corrected signal at the ith receive node can be written as

Yi = hiX +Wi (1)

where hi :=
√
2|gi|2Es/N0, N0/2 is the additive white

Gaussian noise power spectral density, and Wi ∼ N (0, 1).
The quantity h2

i corresponds to the signal-to-noise ratio (SNR)
of the forward link symbols at receive node i. For notational
convenience, we define the parameter α :=

√
2Es/N0 and

note that hi = α|gi|. We also denote the scaled channel
magnitude vector h = [h1, . . . , hk]

⊤.
We assume:
1) The noise realizations are spatially and temporally inde-

pendent and identically distributed (i.i.d.)
2) The forward link complex channel gi is constant within

a symbol duration and is spatially and temporally i.i.d.
3) The magnitude of each complex channel |gi| follows the

Rayleigh(σ) distribution with σ2 = 0.5.
The receivers can reliably exchange information to jointly
decode X . We assume that each receive node quantizes its
observation by making a hard decision on the transmitted
symbol and then broadcasts this hard decision over the local
area network to the other receive nodes. Let Zi = Qi(Yi)
where Qi(·) represents the quantizer at receive node i and
further denote the vector channel output Z = [Z1, . . . , Zk]

⊤.
Since communication among the receive nodes is reliable, all
receive nodes know Z. We consider the outage probability

pout = Prob(Ih(X;Z) < rout)

where rout is the outage rate and Ih(X;Z) is the mutual
information of the channel X → Z given the scaled channel
magnitudes h. Our focus in this paper is on a setting with e-
quiprobable binary channel inputs X and two different receive
strategies: (i) ideal receive beamforming with Zi = Yi for all
i = 1, . . . , k and (ii) distributed reception with hard decision
exchanges such that Zi = sign(Yi) for all i = 1, . . . , k.
Since ideal receive beamforming is optimal, it is of interest
to quantify the performance loss of distributed reception
with hard decision exchanges with respect to ideal receive
beamforming.

III. OUTAGE PROBABILITY ANALYSIS

In this section, we analyze the outage probability of ideal
receive beamforming (distributed reception with unquantized
observation exchanges) and distributed reception with binary
hard decision exchanges.

A. Preliminaries

We first state a well-known result that is used in the
following sections. For |gi| i.i.d. Rayleigh(σ) distributed with
σ2 = 0.5, ∥g∥2 ∼ Γ(k, 1). Thus, ∥h∥2 ∼ Γ(k, α2). If we
define the k-dimensional quadrant

H(c) :=
{
h ∈ Rk : ∥h∥2 < c2 and hi ≥ 0∀i

}
(2)

we can write the probability pk(α, c) := Prob(h ∈ H(c)) as

pk(α, c) = Prob(∥h∥2 < c2)

=

∫ c2

0

f∥h∥2(u)du

= F∥h∥2(c2)

= 1−
k−1∑
i=0

1

i!

(
c2

α2

)i

exp

[
− c2

α2

]
(3)

where f∥h∥2() and F∥h∥2() denote the probability density
function (pdf) and cumulative distribution function (cdf) of
the Gamma-distributed random variable ∥h∥2, respectively.
As observed in the following section, the outage probability
of ideal receive beamforming can be exactly expressed as
pk(α, c) with an appropriately chosen quadrant radius c.

B. Ideal Receive Beamforming

Given an unquantized observation vector Y =
[Y1, . . . , Yk]

⊤ with Yi defined in (1), the ideal receive
beamformer computes the scalar channel output

Z =
[
h1 . . . hk

]
Y = ∥h∥2X + W̃

where W̃ ∼ N (0, ∥h∥2). When X = ±1 equiprobably, the
mutual information of this channel is given as [18]

Ih(X;Z) =
1

2
J(∥h∥) + 1

2
J(−∥h∥) (4)

with

J(x) :=

∫ ∞

−∞

1√
2π

e
−(u−x)2

2 log2

(
2

1 + e−2ux

)
du.

Note that (4) is exact but must be evaluated numerically. For
0 ≤ rout < 1,

B(rout) = {∥h∥ : Ih(X;Z) = rout} (5)

has a unique solution due to the strict monotonicity of
Ih(X;Z) as a function of ∥h∥. The outage probability of the
binary-input ideal receive beamforming channel then follows
from (3) as

pb→bf
out = pk(α,B(rout)) (6)

where α =
√
2Es/N0.

One difficulty with (6) is that B(rout) must be computed
implicitly in (5). An explicit upper bound on the mutual infor-
mation (and hence a lower bound on the outage probability)
can be derived by relaxing the binary assumption on X and
allowing X to be a Gaussian random variable. The mutual
information in this case is

Ih(X;Z) = 0.5 log2
(
1 + ∥h∥2

)
.



Fixing the outage rate rout ≥ 0, the strict monotonicity of
Ih(X;Z) implies that an outage occurs if and only if ∥h∥ <
A(rout) with

A(rout) =
√
22rout − 1. (7)

From (3), the outage probability of the Gaussian-input ideal
receive beamforming channel then follows as

pg→bf
out = pk(α,A(rout)) (8)

Note that A(rout) < B(rout), hence pg→bf
out < pb→bf

out . As
shown in Section IV, however, pg→bf

out ≈ pb→bf
out for values

of rout not too close to one. Hence, (8) can be considered a
convenient approximation for (6) in this regime.

C. Distributed Reception with Hard Decision Exchanges

This section analyzes the outage probability of distributed
reception with binary hard decision exchanges. Unlike ide-
al receive beamforming, the outage region Hk(rout) of k-
receiver distributed reception with hard decision exchanges
for k ≥ 2 receive nodes is not a simple quadrant as defined
in (2). Nevertheless, based on low-dimensional analysis and
numerical results with normalized channels, we observe that
the dominant impact on performance is from the channel
norm ∥h∥. Thus, we propose two radii, C(rout) and D(rout),
with B(rout) < C(rout) < D(rout), such that the outage
probability pb→hd

out ≈ pk(α,C(rout)) ≈ pk(α,D(rout)) with
pb→hd
out = Prob(Ih(X;Z) < rout). We then use the results in

Section III-A to compute approximations on the outage prob-
ability of distributed reception with hard decision exchanges.

1) Two Receive Nodes: In the case with two receive nodes
and binary channel inputs, we can write the mutual informa-
tion of the 2× 4 discrete memoryless channel as

Ih(X;Z) = 1−q1q2 log2

[
p1p2
q1q2

+ 1

]
−p1q2 log2

[
q1p2
p1q2

+ 1

]
− q1p2 log2

[
p1q2
q1p2

+ 1

]
− p1p2 log2

[
q1q2
p1p2

+ 1

]
where pi = Q(hi) and qi = 1 − pi for i = 1, 2. Denoting
p = [p1, p2]

⊤ and given an outage rate 0 < rout < 1, we have

Ih(X;Z) < rout ⇔ p ∈ P2(rout)

⇔ h ∈ H2(rout)

where P2(rout) ⊂ [0, 0.5]2 is the set of channel transition
probabilities that result in outage and H2(rout) ⊂ [0,∞)2 is
the set of scaled channel magnitudes that result in outage.
The boundary of H2(rout) is plotted in Fig. 2 for the case
rout = 0.5. Note that H2(rout) is not a simple quadrant as
defined in (2). The boundaries of two quadrants H(C(rout))
and H(D(rout)) are also plotted in Fig. 2. The radii of
the inner and outer quadrants were selected to match the
boundary of H2(rout) at the points h = [0, C(rout)]

⊤ and
h = D(rout)√

2
[1, 1]⊤, respectively. To compute C(rout), one

can perform the following steps:
1) Set p2 = 0.5 or, equivalently, h2 = 0.
2) Solve Ih(X;Z) = rout to determine p1 or h1 =

Q−1(p1).

3) Compute C(rout) = Q−1(p1) = h1.
To compute D(rout), one can perform the following steps:
1) Set p1 = p2 = p or, equivalently, h1 = h2 = h.
2) Solve Ih(X;Z) = rout to determine p or h = Q−1(p).
3) Compute D(rout) =

√
2Q−1(p) =

√
2h.
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Fig. 2. Outage regions and inner/outer quadrants for the two-receiver case
with rout = 0.5.

From Fig. 2, it appears that H(C(rout)) ⊆ H2(rout) ⊆
H(D(rout)) in the two-receiver case, hence it is tempting to
claim that p2(α,C(rout)) and p2(α,D(rout)) could serve as
lower and upper bounds, respectively, for the actual outage
probability pb→hd

out . A proof of this claim appears to be difficult,
however, even for k = 2 receivers. Hence, we only claim

pb→hd
out ≈ p2(α,C(rout)) ≈ p2(α,D(rout)) (9)

for k = 2 receivers with pb→hd
out = Prob(Ih(X;Z) < rout)

and pk(α, c) defined in (3).
2) k Receive Nodes: These approximations extend immedi-

ately to the general setting of k receive nodes. We first specify
two quadrants H(C(rout)) and H(D(rout)) with C(rout)
computed via the following steps:

1) Set p2 = · · · = pk = 0.5 or, equivalently, h2 = · · · =
hk = 0.

2) Solve Ih(X;Z) = rout to determine p1 or h1 =
Q−1(p1).

3) Compute C(rout) = Q−1(p1) = h1.
Observe that this approximation (which concentrates the avail-
able channel power onto one receiver) is equivalent to ideal
receive beamforming followed by a single hard decision.

Similarly, D(rout) can be computed via the following steps:
1) Set p1 = · · · = pk = p or, equivalently, h1 = · · ·hk =

h.



2) Solve Ih(X;Z) = rout to determine p or h = Q−1(p).
3) Compute D(rout) =

√
kQ−1(p) =

√
kh.

This approximation amounts to setting the channel gains for
all receivers to be equal (and applying hard decisions at each
receiver prior to information combining). Intuitively, given a
channel strength budget ∥h∥ for distributed reception with
hard decision exchanges, concentrating all of the channel
strength onto one receiver should provide better performance
than dispersing it across all receivers evenly.

Based on the two-receiver results, we have

pb→hd
out ≈ pk(α,C(rout)) ≈ pk(α,D(rout)) (10)

for k receivers with pb→hd
out = Prob(Ih(X;Z) < rout) and

pk(α, c) defined in (3).
To provide numerical evidence in support of the approxima-

tions, Fig. 3 shows the empirical distributions of the mutual
information for distributed reception with hard decision ex-
changes for the case with i.i.d. Rayleigh channels normalized
to ∥h∥ = C(rout) and ∥h∥ = D(rout) and rout = 0.5. For
each k ∈ {2, 5, 10, 20}, 5000 independent channel realizations
were generated and the mutual information of each normalized
channel realization was computed. These results show that the
distribution of the mutual information of distributed reception
with hard decision exchanges with channels on the outer radius
D(rout) tends to be quite close to the actual outage rate
rout = 0.5. Hence, at least in these examples, pk(α,D(rout))
is likely to be a better approximation than pk(α,C(rout)). This
is also corroborated by the results in Section IV.
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Fig. 3. Empirical distributions of Ih(X;Z) for distributed reception with
hard decision exchanges with normalized channels and outage rate rout =
0.5. The red and green curves show Ih(X;Z) on the radii ∥h∥ = C(rout)
and ∥h∥ = D(rout), respectively. The blue line is the outage rate.

IV. NUMERICAL RESULTS

This section provides numerical results to illustrate the
effect of rout and k on the radii of the outage regions and the
outage probability of distributed reception. Fig. 4 shows the

four ∥h∥ radii developed in Section III as a function of rout for
a k = 5 receiver system. The radius A(rout) was computed
explicitly from (7) and the remaining radii were computed
using implicit function solvers via the procedures outlined in
Section III. These results show that the inner and outer radii on
the outage region of distributed reception with hard decision
exchanges tend to be close unless rout → 1. These results
also show that the outage regions for ideal beamforming with
binary and Gaussian inputs tend to be close unless rout → 1.
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Fig. 4. Radii of outage quadrants as a function of rout for a k = 5 receiver
distributed reception system.

Note that an approximation for the performance gap in dB
between ideal receive beamforming and distributed reception
with hard decision exchanges can be computed by calculating
β(rout) = 20 log10(D(rout)/B(rout)) Fig. 5 plots this gap
for k = 2, . . . , 20 and rout ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. These
results show that the performance gap is always slightly less
than 2 dB and appears to converge as k → ∞ to a value
close to the classic hard decision penalty of 10 log10(π/2) ≈
1.96 dB [15]–[17] for the rout values tested.

Fig. 6 shows an outage probability simulation with outage
probability plotted versus Es/N0 for k = 1, 2, 5, 10 for
a fixed outage rate rout = 0.5. The outage probabilities
were computed over 105 independent channel realizations
with gi

i.i.d.∼ CN (0, 1). These results show that the outage
probability of distributed reception with hard decision ex-
changes is well-approximated by the analysis in SectionIII and
that the actual outage probability tends to be quite close to
pk(α,D(rout)) corresponding to the outer integration region.
The approximation resulting from the inner integration region
pk(α,C(rout)) tends to be somewhat loose, especially for
larger values of k. The gap between ideal receive beamforming
and distributed reception with hard decision exchanges is con-
sistent with Fig. 5. Note that the results reported in [14] tend
to be somewhat better than those shown in Fig. 6, especially
at smaller values of k, due to the fact that the distributed
reception technique in [14] combines locally unquantized
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information with the hard decisions from other receive nodes.
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Fig. 6. Outage probability versus Es/N0 and k for ideal receive beamforming
and distributed reception with hard decision exchanges with outage rate
rout = 0.5.

While hard decisions exchanges add a severe nonlinearity
to the receiver processing, these numerical results show that
the performance of distributed reception with hard decision
exchanges is still mainly determined by the channel norm
∥h∥. In fact, in Fig. 6, the actual outage probability of
distributed reception with hard decision exchanges is almost
indistinguishable from the approximation pk(α,D(rout)).

V. CONCLUSION

The numerical results in this paper indicate that the per-
formance of distributed reception with binary hard decision
exchanges is mainly governed by the SNR obtained by ideal
receive beamforming (which is proportional to the square of
the norm of the vector channel to the receivers), except for a

performance loss of a little less than 2 dB. For a given vector
channel norm ∥h∥, concentrating the channel strength on one
receiver gives an optimistic approximation for performance,
while distributing the channel strength equally tends to give
a slightly pessimistic approximation which is often close to
the actual outage probability performance. We conjecture that
these approximations actually bound the performance with
hard decision exchanges, but are unable to provide a proof.
Finding a proof or counterexample is an important direction
for future work. Another potentially interesting extension of
this work is to extend the analysis to higher-order forward link
constellations, e.g., QPSK, 8PSK and 16-QAM.
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