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Abstract— This paper focuses on the development of a
cost-aware Bayesian sequential decision-making strategyfor
the search and classification of multiple unknown objects
over a given domain using a sensor with limited sensory
capability. Under such scenario, it is risky to allocate allthe
available sensing resources at a single location of interest,
while ignoring other regions in the domain that may contain
more critical objects. On the other hand, for the sake of
finding and classifying more objects elsewhere, making a
decision regarding object existence or its property based on
insufficient observations may result in miss-detecting or miss-
classifying a critical object of interest. Therefore, a decision-
making strategy that balances the desired decision accuracy
and tolerable risks/costs is highly motivated. The strategy
developed in this paper seeks to find and classify all unknown
objects within the domain with minimum risk under limited
resources.

I. I NTRODUCTION

In many domain search and object classification prob-
lems, the effective management of sensing resources is key
to mission success. In a search task, the objective is to find
every unknown object in a domain and fix its position.
In a classification task, the objective is to take enough
measurements to determine the nature of the object. On
one hand, a sensor may give a false alarm while there
is actually none, or may miss detecting a critical object.
Similarly, the sensor might report incorrect classification
results. On the other hand, taking exhaustive observations
at one particular location may miss the opportunity to
find and classify possibly more critical objects. This is
especially true when the mission domain is large-scale, or
the number of objects is far more than that of sensors [1]–
[3]. Under these scenarios, a sensor has to decide whether
to move and look for other objects, or stop and keep
taking observations at a specific location. To accomplish
these competing tasks with minimum risks under limited
sensory resources, there is a strong motivation to develop
a real-time decision-making strategy that chooses the task
to perform based on an overall risk assessment associated
with the decision. This is the problem addressed in this
paper.

We first review some related literature. Coordinated
search and tracking in probabilistic frameworks has been
studied mainly for optimal path planning. In [4], the
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authors investigate the search-and-tracking problem us-
ing recursive Bayesian filtering with foreknown targets’
positions with noise. The results are extended in [5]
for dynamic search spaces based on forward reachable
set analysis. In [6], the author proposes a Bayesian-
based multisensor-multitarget sensor management scheme.
The approximation strategy maximizes the square of the
expected number of targets. In [7], the problem of finding
a target with some foreknown location information in
the presence of uncertainty and limited communication
channels is discussed. The probability of target existence
is defined as a cost function to determine the vehicle’s
optimal path.

It is worth noting that in the above literature there is
no explicit decision-making strategy for search and track-
ing/classification. To remedy this, the authors developed
a deterministic decision-making strategy for search versus
tracking in [1], and extended the results to a probabilistic
framework in [2] and [3]. The deterministic strategy
proposed in [1] guarantees the detection of all objects and
the tracking of each object’s state for a minimum amount
of time τc. In [2] and [3], a probabilistic Bayesian version
of this algorithm was developed for unknown object search
versus classification as two competing tasks. In this work,
we focus on a cost-aware decision-making strategy for
search and classification under the probabilistic frame-
work. A Bayesian sequential decision-making strategy is
proposed to minimize the Bayes risk (to be formally
defined in Section IV), which is based on both the error
probabilities of the decisions made and the observation
cost. The proposed strategy guarantees a desired detection
and classification uncertainty level everywhere within the
domain with minimum risks.

Sequential detection [8] allows the number of obser-
vation samples to vary in order to achieve an optimal
decision. Due to the randomness of observations at each
time step, a decision may be made with a few observation
samples, whereas for other cases one would rather take
more samples for a possibly better decision. The Baysian
sequential detection method used in this paper is such that
the Bayes risk is minimized at each time step.

The paper is organized as follows. We introduce the
sensor model in Section II. In Section III, the Bayes up-
dates are developed. We propose the cost-aware Bayesian
sequential decision-making strategy in Section III and pro-
vide a simulation for a single cell in Section V. In Section
VI, uncertainty maps are built over the entire domain,
which are used to define search and classification metrics.



The search metric is related to a dynamic observation
cost used for the decision-making strategy. In Section VII,
a sensor motion control strategy is developed for multi-
cell domains and a full-scale simulation is presented. We
conclude the paper with a summary of our current and
future work in Section VIII.

II. SETUP AND SENSORMODEL

A. Problem Setup

Let D ⊂ R
2 be the domain in which objects to be

found and classified are located. We discretize the domain
into Ntot cells. Let c̃ be an arbitrary cell inD and q̃ is
the centroid of cell̃c. Define1 ≤ No ≤ Ntot as the total
number of objects andpj as the position of objectj,
both of which are unknown beforehand. Assume that the
objects are i.i.d distributed overD, and the partition of the
domain is fine enough so that at most one object can exist
in a cell. Without loss of generality, we assume that an
object can have one of two properties, either Property ‘F’
or Property ‘G’. LetSF be the set of all cells containing
an object having Property ‘F’ andSG be the set of all cells
containing an object having Property ‘G’. LetPF andPG

be the initial probability of a cell having an object with
Property ‘F’ and Property ‘G’, respectively. Hence,No

is a binomial random variable with parametersNtot and
Pp = PF +PG, wherePp gives the initial total probability
of object present at a cell̃c and is i.i.d for allc̃ ∈ D. The
expected number of objects inD is given by

E[No] = NtotPp. (1)
Let X(c̃) be a ternary state random variable, where

0 corresponds to object absent,1 corresponds to object
having Property ‘F’, and ‘2’ corresponds to object having
Property ‘G’. Note that the realization ofX(c̃) depends
on the cell being observed:

X(c̃) =







1 c̃ ∈ SF

2 c̃ ∈ SG

0 otherwise
.

Since bothSF andSG are unknown and random,X(c̃)
is a random variable with respect to everyc̃ ∈ D. This
paper focuses on the case where objects are immobile,
therefore,X(c̃) is invariant with respect to time.

B. Sensor Model

In this work, we assume a sensor is able to observe
only one cell at a time. Other sensor models that are
capable of observing multiple cells at the same time (e.g.,
the sensor models with limited sensory range proposed in
[1]–[3], [9]–[16]) can be used. We consider the extreme
case in which the resources available are at a minimum (a
single sensor as opposed to multiple cooperating ones).

To be consistent with the state model, we define
a ternary observation random variableY (c̃), where 0
corresponds to an observation indicating object absent at
cell c̃, 1 corresponds to an observation indicating that there
exists an object having Property ‘F’, and2 corresponds to
an observation indicating an object having Property ‘G’.

Given a stateX(c̃) = i, i = 0, 1, 2, the probability
mass functionf of the observation distribution is given

by

fY (y|X(c̃) = i) =







βi0 if y = 0
βi1 if y = 1
βi2 if y = 2

, (2)

where
∑2

j=0
βij = 1, Y corresponds to the ternary

random variable andy is the dummy variable. Because
the statesX(c̃) are spatially i.i.d., the observationsY (c̃)
taken at every cell̃c within the mission domainD are
spatially i.i.d. and hence the probability distribution for
every c̃ ∈ D follows the same structure.

Conditioned on the actual stateX(c̃) at a particular cell
c̃, let t be the time index, the observationsYt(c̃) taken
along time are temporally i.i.d. LetZ0(c̃), Z1(c̃), and
Z2(c̃) be the number of times that observationY (c̃) =
0, 1, and 2, respectively, appears during a window of
L time steps. The quantitiesZ0(c̃), Z1(c̃), and Z2(c̃)
are integer random variables that satisfy

∑2

k=0
Zk(c̃) =

L, Zk(c̃) ∈ [0, L]. Therefore, given an actual state
X(c̃) = i, the probability of having observationz0, z1, z2
in a window of L time steps follows a multinomial
distribution

Prob(Z0(c̃) = z0, Z1(c̃) = z1, Z2(c̃) = z2|X(c̃) = i)

=
L!

z0!z1!z2!
βz0
i0 β

z1
i1 β

z2
i2 ,

2
∑

k=0

zk = L. (3)

The sensor probabilities of making a correct observa-
tion areβ00, β11 andβ22. For the sake of simplicity, here
we assume that the values are some constants greater than
1

2
. For the sensor’s probability of making an erroneous

observationβij , i 6= j, we use a simple linear combination
modelβij = λj(1 − βii), i 6= j,

∑2

j=0
βij = 1, where

λj is some weighting parameter that satisfies
∑

j 6=i λj =
1, 0 ≤ λj ≤ 1.

III. B AYES UPDATES FORSEARCH & CLASSIFICATION

Based on the sensor model, in this section, we employ
Bayes’ rule to update the probability of object absence,
and its classification property at a single cellc̃. Under
the i.i.d. assumption, the Bayesian updates equations de-
veloped in this section will be deployed to the multi-cell
domain in Section VI and VII.

Given a single observationYt(c̃) = j, j = 0, 1, 2 at
time stept, according to Bayes’ rule, for each̃c, we have
P (X(c̃) = i|Yt(c̃) = j; t+ 1) = αjβijP (X(c̃) = i; t),(4)
whereP (X(c̃) = i|Yt(c̃) = j; t + 1), i = 0, 1, 2 is the
posterior probability of the actual state beingX(c̃) = i

at time stept+ 1, P (X(c̃) = i; t) is the prior probability
of being state typeX(c̃) = i at t, and αj serves as
a normalizing function that ensures that the posterior
probabilities

∑2

i=0
P (X(c̃) = i|Yt(c̃) = j; t+ 1) = 1.

IV. COST-AWARE BAYESIAN SEQUENTIAL

DECISION-MAKING

In this section, we will extend the standard binary
Bayesian sequential detection method [8], [17], [18] from
signal detection theory [8], [19]–[21] into a ternary cost-
aware Bayesian sequential decision-making strategy.



Assuming a Uniform Cost Assignment (UCA) [8], we
define the decision cost components asCij = 1 if i 6= j,
andCii = 0. Here,Cij is the cost of decidingi when the
state isj. Let i = 0, 1, 2 represent ‘deciding object absent’,
‘deciding object having Property ‘F”, and ‘deciding object
having Property ‘G”, respectively, andj corresponds to
stateX(c̃) = j.

Let R̃0(c̃, L,∆), L ≥ 1, be the conditional Bayes risk
of deciding there is an object having Property ‘F’ or ‘G’
at c̃ given that there is actually none over at least one
observation,

R̃0(c̃, L,∆) = c0∆b0, c0 = [C00 C10 C20], (5)
where c0 contains the costs of deciding object absent,
having Property ‘F’ and ‘G’ when there is actually nothing
at c̃. The quantityb0 is the first column of the general con-
ditional probability matrixB for L ≥ 1. The dimension
of B is N × 3. The number3 is the number of possible
decisions. The quantityN is the total number of different
observation combinations(z0, z1, z2) that the sensor can
take according to the multinomial distribution (3) over a
window ofL time steps. The elementBij gives the prob-
ability of having theith kind of observation combination
out of N given statej. Note that

∑N−1

i=0
Bij = 1. The

quantity∆ is a deterministic decision rule. ForL ≥ 1,
∆ is a 3 × N matrix. The matrix element∆n

i can be
either0 or 1, and

∑1

i=0
∆n

i = 1. When∆n
i = 1, it means

decisioni is made given that the observation type is in the
nth column. WhenL = 0, i.e., there are no observations
taken, decisions will be made regardless of observations
and there is no explicit matrix form for∆.

Similarly, the conditional Bayes risk
R̃i(c̃, L,∆) = ci∆bi, ci = [C0i C1i C2i], i = 1, 2, (6)
gives the cost of making an erroneous decision atc̃ given
that the actual state is eitherX(c̃) = 1 or X(c̃) = 2 over
L ≥ 1 observations.

Therefore, under UCA, there is no cost if the deci-
sion is the actual state, and the conditional Bayes risk
R̃0, R̃1, R̃2 can be interpreted as the error probability of
making a wrong decision under a certain decision rule∆
overL observations at cell̃c.

Now let us assign an observation costcobs each time
the sensor makes a new observation. In this section, we
assume it is a constant. In Section VI, a dynamiccobs(t)
is developed to relate the observation cost with the task
metrics for multi-cell domains.

For each cell at every time step, the sensor has to
choose among: (i) deciding object absent, (ii) deciding
object having Property ‘F’, (iii) deciding object having
Property ‘G’, or (iv) taking one more observation. This
same decision procedure is repeated until the cost of
making a wrong decision based on the current observation
is less than that of taking one more observation for a
possibly better decision. The cost-aware Bayesian sequen-
tial decision-making strategy is such that the Bayes risk
at each time step is minimized. Letφ = {φk}

∞
k=0

be
the stopping rule. Ifφk = 0, the sensor takes another

measurement, ifφk = 1, the sensor stops taking fur-
ther observations. Define the stopping time asN(φ) =
min{k : φk = 1}, which is a random variable due to the
randomness of the observations. The expected stopping
time under stateX(c̃) = i is then given byEi[N(φ)] =
E[N(φ)|X(c̃) = i].

Since now we assign a costcobs for each observation,
the conditional Bayes risks (5,6) under UCA overL ≥ 0
observations can be modified to be:

Ri(c̃, L,∆) = Prob(decideX(c̃) 6= i|X(c̃) = i)

+cobsEi[N(φ)], i = 0, 1, 2. (7)
If L ≥ 1, ∆ has explicit matrix form and we can

further rewrite the above equations as:
Ri(c̃, L,∆) = ci∆bi + cobsEi[N(φ)], i = 0, 1, 2. (8)

Define the Bayes risk as the expected conditional
Bayes risk of making a wrong decision under decision
rule ∆:

r(c̃, L, π1, π2,∆) = (1− π1 − π2)R0(c̃, L,∆) +

π1R1(c̃, L,∆) + π2R2(c̃, L,∆), L ≥ 0, (9)
whereπ1 = P (X(c̃) = 1; t = tv) andπ2 = P (X(c̃) =
2; t = tv) are the prior probabilities of object having
Property ‘F’ and Property ‘G’, respectively, at cell̃c
and π0 = 1 − π1 − π2 gives the prior probability of
object absent. Here,tv is the time instant whenever an
observation is taken at cellc̃. Fix a pair of(π1, π2) under
the constraintsπi ∈ [0, 1] and

∑2

i=1
πi ≤ 1, the minimum

Bayes risk surface at this particular cell has the minimum
r value over all possible choices of∆ with L ≥ 0. We
want to sequentially make optimal decisions based on all
∆ underL ≥ 0 such that the Bayes riskr is minimized
at each time step.

If the sensor does not take any observations (L = 0)
and directly make a decision, the Bayes risks of3 different
decision rules∆ are as follows:r(c̃, L = 0, π1, π2,∆ =
decide object absent) = π1 + π2, r(c̃, L = 0, π1, π2,∆ =
decide Property ‘F’) = 1 − π1, r(c̃, L = 0, π1, π2,∆ =
decide Property ‘G’) = 1− π2.

If the sensor takes an observation att = 0 (L = 1),
the minimum Bayes risk over all possible choices of∆
with L = 1 is
rmin(c̃, L = 1, π1, π2) = min

∆∈GL

π0R0(c̃, L = 1,∆)

+π1R1(c̃, L = 1,∆) + π2R2(c̃, L = 1,∆) ≥ cobs,

whereGL is defined as the set of all deterministic decision
rules that are based on exactlyL observations (Here,L =
1).

Following the same procedure, we compute the mini-
mum Bayes risk functionsrmin(c̃, L, π1, π2) under differ-
ent observation numbersL ≥ 0 and then find the overall
minimum Bayes risk,
r∗min(c̃, π1, π2) = minL=0,1,2,...rmin(c̃, L, π1, π2).

The basic idea of the cost-aware Bayesian sequential
decision-making strategy is as follows: With initial priors
π1 = P (X(c̃) = 1; t = 0) and π2 = P (X(c̃) = 2; t =
0), check the correspondingr∗

min
value in the overall

minimum Bayes risk surface. Ifr∗
min

is given by the risk



plane withL ≥ 1, the Bayes risk is lowered by taking an
observationYt=0(c̃). Compute the posterior probabilities
P (X(c̃) = i|Yt=0(c̃); t = 1) according to Equation (4)
and again check the corresponding minimum Bayes risk
r∗
min

to make decisions. The process is repeated using
these posteriors as the new priors until the Bayes risk of
taking one more observation is higher than the cost of
making a wrong decision.

Let us illustrate the details of the above scheme via
the following preliminary simulation for a single cell.

V. SIMULATION FOR A SINGLE CELL

In this simulation, we fix a cell̃c, and assume that the
sensor is located at the centroid of this cell. The sensing
parameters are chosen as follows:

β00 = 0.8, β01 = 0.1, β02 = 0.1,

β10 = 0.2, β11 = 0.7, β12 = 0.1, (10)

β20 = 0.1, β21 = 0.15, β22 = 0.75.
The observation cost is set ascobs = 0.05. Figure 1
shows the overall minimum Bayes riskr∗

min
(c̃, π1, π2).

It is constructed by taking the smallest value of all
rmin(c̃, L, π1, π2), L ≥ 0 under each fixed prior proba-
bility pair (π1, π2). Here, we only list the expressions for
the risk planes of decision rules that constituter∗

min
as

annotated by the numerals1− 10 in Figure 1. The Bayes
risk functions under more than3 observations (L ≥ 3)
have largerr values and do not contribute tor∗

min
for the

particular choice ofβ andcobs here.
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Fig. 1. The overall minimum Bayes risk surfacer∗
min

is composed of
the enumerated risk planes described in this section.

Risk Plane 1. This plane represents the decision rule
“decide no object at the cell regardless of observations
underL = 0”. According to Equations (7) and (9), the
Bayes risk isr(c̃, L = 0, π1, π2,∆ = decide no object) =
π1 + π2.

Risk Plane 2. This plane represents the decision rule
“decide there is an object with Property ‘F’ regardless of
the observations underL = 0”: r(c̃, L = 0, π1, π2,∆ =
decide Property ‘F’) = 1− π1.

Risk Plane 3. This plane represents the decision rule
“decide there is an object with Property ‘G’ regardless of

the observations underL = 0”: r(c̃, L = 0, π1, π2,∆ =
decide Property ‘G’) = 1− π2.

Risk Plane 4.This plane corresponds to the decision rule
underL = 1. The general conditional probability matrix
for L = 1 is given as

B(L = 1) =





β00 β10 β20

β01 β11 β21

β02 β12 β22



 ,

where the rows correspond to the observations(z0 =
1, z1 = 0, z2 = 0), (z0 = 0, z1 = 1, z2 = 0), and
(z0 = 0, z1 = 0, z2 = 1), respectively. Let us consider
the following decision rule,

∆11 =





1 0 0
0 1 0
0 0 1



 .

That is, decide the actual state according to the only
one observation that was taken. Therefore,r(c̃, L =
1, π1, π2,∆ = ∆11) is given directly by Equations (8)
and (9).
Risk Plane 5. This plane gives the decision rule under
L = 2. The general conditional probability matrix is given
as

B(L = 2) =

















β2
00 β2

10 β2
20

β2
01 β2

11 β2
21

β2
02 β2

12 β2
22

2β00β01 2β10β11 2β20β21

2β00β02 2β10β12 2β20β22

2β01β02 2β11β12 2β21β22

















,

where the rows correspond to the observations(z0 =
2, z1 = 0, z2 = 0), (z0 = 0, z1 = 2, z2 = 0),
(z0 = 0, z1 = 0, z2 = 2), (z0 = 1, z1 = 1, z2 = 0),
(z0 = 1, z1 = 0, z2 = 1), and (z0 = 0, z1 = 1, z2 = 1),
respectively. Risk Plane 5 corresponds to the following
decision rule,

∆21 =





1 0 0 1 1 0
0 1 0 0 0 1
0 0 1 0 0 0



 .

Following the same procedure as above, we can get
r(c̃, L = 2, π1, π2,∆ = ∆21) according to Equation (9)
without difficulty.
Risk Plane 6-10.These planes also give the decision rules
underL = 2. The corresponding decision rules are,

∆22 =





1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 0 0



 (Risk Plane 6)

∆23 =





1 0 0 0 0 0
0 1 0 1 0 1
0 0 1 0 1 0



 (Risk Plane 7)

∆24 =





1 0 0 1 1 0
0 1 0 0 0 0
0 0 1 0 0 1



 (Risk Plane 8)

∆25 =





1 0 0 0 0 0
0 1 0 1 0 0
0 0 1 0 1 1



 (Risk Plane 9)

∆26 =





1 0 0 1 0 0
0 1 0 0 0 0
0 0 1 0 1 1



 (Risk Plane 10)

The Bayes risks follow as above.



Whenr∗
min

is given by Risk Plane1, 2 or 3, the sensor
stops taking observation and makes the corresponding
decision, otherwise, it always takes one more observation.

VI. T HE UNCERTAINTY MAP AND TASK METRICS

In this section, we define the uncertainty maps based
on the posterior probabilities derived in Section III as
well as the metrics for the search and classification tasks
in general multi-cell domains. We also relate the task
metrics with a dynamic observation cost for the Bayesian
sequential decision-making strategy in multi-cell domains.

A. The Uncertainty Map

For the search task, we use the information entropy to
construct an uncertainty map for a multi-cell task domain
[22]. Let the probability distributionP (c̃, t) for object
absent and present at cellc̃ at time t be P (c̃, t) =
{P (X(c̃) = 0; t), 1 − P (X(c̃) = 0; t)}. We define the
information entropy for the distributionP (c̃, t) as:

H0(P (c̃, t)) = −P (X(c̃) = 0; t) lnP (X(c̃) = 0; t)

−(1− P (X(c̃) = 0; t)) ln(1 − P (X(c̃) = 0; t)). (11)
H0(P (c̃, t)) measures the uncertainty level of object ex-
istence at cell̃c at time t. The greater the value ofH0,
the larger the uncertainty is. Note thatH0(P (c̃, t)) ≥ 0.
The desired uncertainty level isH0(P (c̃, t)) = 0 and
its maximum attainable value isH0,max = 0.6931 when
P (X(c̃) = 0; t) = 0.5. See [2], [3] and references therein
for more detailed properties of the uncertainty function.
The information entropy distribution at time stept over
the domain forms an uncertainty map at that time instant.

Similarly, we can build uncertainty mapsH1 andH2

for stateX(c̃) = 1, 2, ∀c̃ ∈ D, respectively, to evaluate
the sensor’s confidence level for classification.

B. Task Metrics

When the observation cost is low, the Bayes risk is
minimized by taking more observations, the sensor will
decide not to proceed searching for more objects, but to
stop and take an observation at the current cell. Under
this scenario, we define the cost of not carrying on further
search as follows:

J (t) =

∑

c̃∈D H0(P (c̃, t))

H0,maxAD

, (12)

where AD is the area of the domain. The costJ is
proportional to the sum of the search uncertainty overD.
According to this definition, we have0 ≤ J (t) ≤ 1. If
H0(P (c̃, ts)) = 0 at somet = ts for all c̃ ∈ D, then
J (ts) = 0 and the entire domain has been satisfactorily
covered and we know with 100% certainty that there are
no more objects yet to be found.

Similarly, We useH1 and H2 as the classification
metrics. When the classification uncertainty of a cell is
within a small neighborhood of zero, the classification task
is said to be completed.

Now let us associate a dynamic observation costcobs(t)
with the search cost functionJ (t),

cobs(t) = γJ (t), (13)

where γ > 0 is some constant. At the outset of the
mission, the observation cost is high since there are
still many uncovered regions in the domain. The cost-
aware Bayesian sequential decision-making strategy tends
to make a decision with a few observations, which may
yield large number of wrong decisions, but increase the
potential of rapidly detecting more critical objects. When
the sensor has surveyed more regions, the uncertainty
level for all the visited cells is reduced, and both the
search cost function and the observation cost decrease.
The process will be repeated untilJ (t) → 0, H1 → 0,
andH2 → 0, ∀c̃ ∈ D, i.e., all the unknown objects of
interest within the domain have been found and classified
with a desired uncertainty level.

VII. F ULL -SCALE DOMAIN MOTION CONTROL &
SIMULATIONS

In this section, we consider a sensor motion control
strategy over the mission domainD that seeks to find all
objects inD with a desired confidence level (i.e., achieve
J → 0). For the sake of simplicity, we assume that there
is no speed limit on the sensor, i.e., the sensor is able to
move to any cell withinD from its current location.

First, we define the setQH(t) = {c̃ ∈ D :
argmax̃

c
H0(P (c̃, t))}. Next, let q̃c(t) be the centroid of

the cell that the sensor is currently located at and define
the subsetQd(t) ⊆ QH(t) as Qd(t) = {c̃ ∈ QH(t) :
argmiñ

c
‖q̃c(t) − q̃‖}, where q̃ is the centroid of̃c. The

setQd(t) contains the cells which have both the shortest
distance from the current cell and the highest search
uncertainty. When the sensor finishes taking observations
in a current cell via the Bayesian sequential decision-
making strategy and decides to move to a new cell, it will
choose the next cell to go to fromQd(t). Note thatQd(t)
may have more than one cell. LetNHd be the number of
cells inQd(t), the sensor will randomly pick a cell from
Qd(t) with probability 1

NHd
.

Next, let us demonstrate the cost-aware Bayesian se-
quential decision-making strategy over a full-scale domain
via a simulation. We consider a20 × 20 square domain
D. For each̃c ∈ D, we assume an i.i.d. prior probability
distribution withP (X(c̃) = 0; t = 0) = 0.8, P (X(c̃) =
1; t = 0) = 0.1, and P (X(c̃) = 2; t = 0) = 0.1.
The number, locations and properties of the objects are
randomly generated. The radius of the sensor is shown
by the black circle in Figure 2. The black dot represents
the position of the sensor. The sensing parametersβij

are the same as in Equation (10). The constantγ for the
observation cost in Equation (13) is set as0.05 and the
desired uncertainty for every cell isε = 0.02.

The number of objects turns out to be72 (the expected
number of objects is80 according to Equation (1)) with
locations indicated by the37 white dots (objects with
Property ‘F’) and35 magenta dots (objects with Property
‘G’) in Figure 2. Figure 2 shows the evolution ofH0.
At t = 1023, H0 = 1.1 × 10−2 < ε has been achieved
everywhere withinD.
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Fig. 2. Uncertainty map (dark red for highest uncertainty and dark blue
for lowest uncertainty) at (a)t = 1, (b) t = 200, (c) t = 620, and (d)
t = 1023 (with initial uncertaintyH0(P (c̃, 0)).

Figure 3(a) shows the evolution ofJ (t) and can be
seen to converge to zero. Figure 3(b) shows that object
6 (located at(2, 11)) has Property ‘F’ with classification
uncertaintyH1 = 0.0074 < ε at time step1030. The result
is consistent with the simulation setup. The properties of
other objects are also satisfactorily classified and can be
shown like Figure 3(b).
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Fig. 3. (a) Evolution ofJ (t), and (b) Probability of object6 having
Property ‘F’ and the corresponding uncertainty functionH1.

The total number of missed detections during the entire
missions is 16, and that of false detections is 5. The
number of misclassifications of Property ‘G’ given ‘F’,
and Property ‘F’ given ‘G’ is 1 and 0, respectively. Note
that the numbers of erroneous decisions are small relative
to the total number of cells within the domain. This
suggests that the cost-aware Bayesian sequential decision-
making strategy is efficient in making good decisions
given limited available observations.

VIII. C ONCLUSION

In this paper, a cost-aware decision-making strategy
was developed for the detection and satisfactory classifi-
cation of all objects in a domain via sequential Bayesian
risk analysis. Future research will focus on the tracking
and classification of mobile objects using multiple au-
tonomous vehicles. The question of unknown environment

geometries will also be addressed. Objects with non i.i.d
distributions over the domain will be investigated, where
decision-making at one cell is affected by all the decisions
made at other cells. Sequential Probability Ratio Test
(SPRT) method will also be investigated for the cases
where no prior information is available.
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