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Abstra
t�This paper 
onsiders 
onsensus in wireless networks

with random symmetri
 gossip. During ea
h timeslot, a pair of

nodes is randomly sele
ted. These nodes then ex
hange messages

and adjust their states to redu
e the distan
e from 
onsensus in

the network. Sin
e only two messages are ex
hanged and only

two nodes adjust their states in ea
h timeslot, the 
onvergen
e

rate of symmetri
 gossip to a 
onsensus state is often prohibitively

slow (espe
ially for networks with a large number of nodes). This

paper proposes an extension to the symmetri
 gossip 
onsensus

model whi
h takes advantage of the broad
ast nature of wireless

transmissions. Spe
i�
ally, this paper 
onsiders a s
enario in

whi
h some nodes 
an �overhear� the transmissions of the

randomly sele
ted node pair in ea
h timeslot. These nodes


an use this overheard information to adjust their states for

�free�, i.e., without any additional messaging in ea
h timeslot,


onsequently improving 
onvergen
e rates. This paper analyzes

the performan
e of random symmetri
 gossip with overhearing

nodes under several different network topologies. Numeri
al

results are also provided for 
onsensus syn
hronization s
enario.

These results show that overhearing nodes 
an signi�
antly im-

prove the 
onvergen
e rate of symmetri
 gossip systems without

in
reasing messaging overhead.

Index Terms�
onsensus, symmetri
 gossip, wireless networks,

syn
hronization

I. INTRODUCTION

Random 
onsensus methods have been 
onsidered in [1℄�

[15℄ and are attra
tive sin
e 
onsensus fun
tions, e.g., dis-

tributed estimation or syn
hronization, 
an be embedded in

existing network traf�
 with random information �ows. This

paper 
onsiders the random symmetri
 gossip 
onsensus prob-

lem. In ea
h timeslot, a pair of nodes is randomly sele
ted

a

ording to some distribution and ex
hange messages while

all other nodes remain silent. Ea
h node in the randomly se-

le
ted pair uses the information from the other node in the pair

to adjust their state and improve the 
onsensus metri
 of the

network. In this paper, we adopt a �distan
e from 
onsensus�

metri
, whi
h is a measure of the state displa
ement from the


urrent average. Given a state x[k℄ = [x

1

[k℄; : : : ; x

N

[k℄℄

>

2

R

N

at time k, the distan
e from 
onsensus at time k is de�ned

as

d[k℄ :=

1

N

kx[k℄� 1

N

�x[k℄k

2

2

(1)
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where �x[k℄ :=

1

N

P
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i
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N

2 R

N

is a ve
-

tor of ones. In the 
ontext of syn
hronization, the state

x[k℄ 
orresponds to the drifts and/or offsets of the 
lo
ks

in the network. It has been shown that, under 
ertain


onditions, the distan
e from 
onsensus 
onverges almost

surely in a mean squared sense at an exponential rate, e.g.,

P

�

lim

k!1

(d[k℄)

1=k

= �

2

	

= 1 for a given 
onstant � [9℄,

[10℄. In asymmetri
 and symmetri
 gossip systems, however,

the 
onvergen
e rate 
an be prohibitively slow (espe
ially for

systems with a large number of nodes) due to the fa
t that only

one or two nodes adjust their states in ea
h timeslot. Random

broad
ast 
onsensus [15℄ 
an improve the 
onvergen
e rate of


onsensus systems at the 
ost of in
reased messaging overhead

in ea
h timeslot.

In this paper, we propose an extension of the random

symmetri
 gossip 
onsensus model whi
h takes advantage

of the broad
ast nature of wireless transmissions, potentially

providing 
onvergen
e rates similar to random broad
ast with-

out the additional messaging overhead of random broad
ast.

A
tually, the �overhearing� strategy has been studied in some

prior literatures and has wide appli
ations. In [16℄, the authors

studied a two-hop interferen
e 
hannel with the help of two

relay nodes and assumed that the transmissions of the relays in

the se
ond hop 
an be overheard by the sour
es in the �rst hop.

Strategies were designed to optimally 
onsolidate the dual role

of the relay signal: 
onveying the message to its 
orresponding

destination versus sending a feedba
k signal to in
rease the


apa
ity of the �rst hop. In [17℄, the authors studied the

naming game (NG), whi
h des
ribes the agreement dynami
s

of a population of N agents intera
ting lo
ally in pairs leading

to the emergen
e of a shared vo
abulary, and introdu
e the


on
ept of overhearing. Results showed that the population

of agents rea
hes a faster agreement with a signi�
antly low-

memory requirement with overhearing strategy.

Spe
i�
ally, this paper 
onsiders a s
enario 
alled �random

symmetri
 gossip with overhearing nodes� in whi
h some

nodes 
an �overhear� the transmissions of the randomly se-

le
ted node pair in ea
h timeslot. In timeslot k, when node i

transmits a message to node j and then node j transmits

a response to node i, other nodes who are in the vi
inity

of node i and node j may overhear one or both of these

messages. Using this �free� information, these overhearing

nodes 
an also adjust their states to improve the 
onsensus



metri
. Intuitively, the 
onvergen
e rate is improved sin
e

more nodes adjust their states in ea
h timeslot.

This paper studies the 
onvergen
e rate of random sym-

metri
 gossip with overhearing nodes in three s
enarios: (1)

fully-
onne
ted networks, (2) line or ring networks, and (3)

uniformly distributed planar networks with �xed overhearing

radius. Numeri
al results are also provided to demonstrate the

performan
e of random symmetri
 gossip with overhearing

nodes and 
onvergen
e rates are 
ompared to 
onventional

random symmetri
 gossip systems without overhearing nodes

as well as random broad
ast 
onsensus systems [15℄. The

results show that random symmetri
 gossip with overhearing

nodes 
an provide a 
onvergen
e rate similar to random

broad
ast 
onsensus without the additional messaging over-

head asso
iated with random broad
ast 
onsensus. In fa
t,


omparing the 
onvergen
e rates from the point of view of

number of message ex
hanges, our results show that random

symmetri
 gossip with overhearing nodes outperforms random

broad
ast 
onsensus in the s
enarios 
onsidered.

II. SYSTEM MODEL

We assume a 
onne
ted time-slotted wireless network with

N nodes denoted as N = f1; : : : ; Ng. The topology of the

network is assumed to be �xed. In ea
h timeslot, the node pair

(i; j) is randomly sele
ted and ex
hange messages. We denote

E =

n

(i; j) 2 N

2

: i < j and (i; j) 
an ex
hange messages

o

as the set of all distin
t node pairs in the network. Due to our

fo
us on symmetri
 gossip, we do not distinguish between the

pair (i; j) and the pair (j; i) and hen
eforth assume i < j.

We assume that ea
h node pair is sele
ted in ea
h timeslot

independently and with equal probability. Spe
i�
ally,

Probf(i; j) sele
tedg =

(

p (i; j) 2 E

0 otherwise

where p =

1

jEj

. The sets O

i

and O

j

denote the sets of nodes

able to overhear node i and node j, respe
tively. Note that O

i

and O

j

are not disjoint in general. We assume that ea
h node

in the sets O

i

and O

j

has a probability q of overhearing the

transmissions from node i and node j, respe
tively. Setting

q = 0 prevents overhearing and redu
es the system model to

the 
onventional symmetri
 gossip 
ase without overhearing

nodes.

The following se
tions analyze the behavior of random sym-

metri
 gossip with overhearing nodes in three s
enarios: (1)

fully-
onne
ted networks, (2) line or a ring networks, and (3)

uniformly distributed planar networks with �xed overhearing

radius.

A. Fully-Conne
ted Network

In this type of network, all of the nodes in the network are

lo
ated 
lose enough to ea
h other su
h that any pair of nodes

has the ability to ex
hange messages. The set of distin
t node

pairs is thus

E = f(1; 2); : : : ; (1; N); (2; 3); : : : ; (2; N); : : : ; (N � 1; N)g

with jEj =

N

2

�N

2

. The set of potential overhearing nodes of

node i is O

i

= N nfi; jg and the set of potential overhearing

nodes of node j is O

j

= N n fi; jg = O

i

.

B. Line or Ring Network

In this s
enario, all N nodes are lo
ated on a line or a ring.

In ea
h timeslot, it is assumed that only two adja
ent nodes


an ex
hange messages.

For a line network, the set of distin
t node pairs is given as

E = f(1; 2); (2; 3); : : : ; (N � 1; N)g

with jEj = N � 1. The set of potential overhearing nodes of

node i and node j = i+ 1 
an be expressed respe
tively as

O

i

=

(

? i = 1

fi� 1g otherwise

and

O

i+1

=

(

? i = N � 1

fi+ 2g otherwise.

A ring network is similar to the line network ex
ept that

node 1 
an also ex
hange messages with node N . In this 
ase,

the set of distin
t node pairs is given as

E = f(1; 2); (2; 3); : : : ; (N � 1; N); (1; N)g

with jEj = N . The set of potential overhearing nodes of node

i and node j = i+ 1 
an be expressed respe
tively as

O

i

=

(

fNg i = 1

fi� 1g otherwise

and

O

i+1

=

(

f1g i = N � 1

fi+ 2g otherwise.

C. Uniform Planar Network With Fixed Overhearing Radius

In this s
enario, all nodes are uniformly distributed in a

�xed region, say a re
tangle with length a and width b. If we

use (x

i

; y

i

) to denote the 
oordinates of the ith node, then we

have x

i

� U(0; a) and y

i

� U(0; b) for all i 2 N . We also

assume that all 
oordinates are independently generated. We

assume that node i 
an only ex
hange messages with nodes

inside a 
ir
le with 
enter (x

i

; y

i

) and radius 
. If we use

�(i; j) to denote the distan
e between node i and node j, then

the set of nodes able to ex
hange messages with node i 
an

be expressed as E

i

= fj 2 N n fig : �(i; j) � 
g. The set of

distin
t node pairs follows as

E =

N

[

i=1

f(i; j) 2 N

2

: j > i and �(i; j) � 
g:

We also assume that only the nodes inside a 
ir
le with 
enter

(x

i

; y

i

) and radius r � 
 
an overhear node i. Thus the set of

nodes whi
h 
an potentially overhear node i 
an be expressed

as O

i

= f` 2 E

i

n fjg : �(i; `) � rg and the set of nodes

whi
h 
an potentialy overhear node j 
an be expressed as

O

j

= f` 2 E

j

n fig : �(j; `) � rg.



III. CONSENSUS DYNAMICS

In this se
tion, we des
ribe the 
onsensus dynami
s of

random symmetri
 gossip with overhearing nodes. In general,

the state ve
tor x[k℄ 2 R

N

has random dynami
s governed

by

x[k + 1℄ = (I

N

+ �R[k℄)x[k℄ (2)

where I

N

is an N � N identity matrix, � > 0 is a stepsize

parameter, and R[k℄ 2 R

N�N

is a matrix randomly drawn

from some �nite set R satisfying the property R[k℄1

N

= 0

for all R[k℄ 2 R where 1

N

is an N � 1 ve
tor of ones. In the


ontext of syn
hronization, the state ve
tor x[k℄ 
orresponds

to 
lo
k drifts and/or offsets and the R[k℄ matri
es 
orrespond

to 
lo
k 
orre
tions resulting from random intera
tions among

the nodes in the network.

In a 
onventional symmetri
 gossip system, 
onditioning on

the node pair (i; j), the update matrix R[k℄ 
an be expressed

as

R[k℄ = e

i

(e

j

� e

i

)

>

+ e

j

(e

i

� e

j

)

>

where e

i

is the i

th

standard basis ve
tor with all elements

equal to zero ex
ept the i

th

element whi
h is equal to one. In

the 
ase of random symmetri
 gossip with overhearing nodes,

the update matrix R[k℄ 
an be expressed as

R[k℄ = e

i

(e

j

� e

i

)

>

+ e

j

(e

i

� e

j

)

>

+

X

m2Q

i

e

m

(e

i

� e

m

)

>

+

X

n2Q

j

e

n

(e

j

� e

n

)

>

where Q

i

� O

i

and Q

j

� O

j

are the nodes that overhear the

messages from node i and node j, respe
tively. Although O

i

and O

j

are deterministi
 and �xed, the sets Q

i

andQ

j

are ran-

dom and depend on the overhearing probability parameter q.

Also note that, even though we are 
onsidering a symmetri


gossip system from the perspe
tive of nodes i and j, from the

perspe
tive of the overhearing nodes the information �ow is

asymmetri
.

For random broad
ast [15℄, in ea
h timeslot ea
h node


hooses equiprobably whether to transmit or re
eive. Hen
e,

the average number of messages transmitted in ea
h timeslot is

N

2

. Assuming a fully-
onne
ted network so that all re
eiving

nodes re
eive the transmissions of all transmitting nodes and

letting T [k℄ � N denote the set of transmitting nodes in

timeslot k, the update matrix R[k℄ 
an be expressed as

R[k℄ =

X

j2NnT [k℄

X

i2T [k℄

e

j

(e

i

� e

j

)

>

:

IV. NUMERICAL RESULTS

This se
tion presents numeri
al results demonstrating the

effe
tiveness of random symmetri
 gossip with overhearing

nodes in the 
ontext of drift syn
hronization in a wireless


ommuni
ation network. Spe
i�
ally, the goal is to syn
hro-

nize the frequen
ies of all of the 
lo
ks in the network

through 
onsensus te
hniques. In ea
h timeslot, the randomly

sele
ted node pair (i; j) ex
hange messages, estimate their

relative 
lo
k drifts, and then adjust their drifts to improve

the 
onsensus metri
 as dis
ussed in [18℄. The distan
e from


onsensus metri
s is 
omputed for the drifts in ea
h timeslot

and ensemble averaged over 1000 runs. In all of the results

in this se
tion, the initial drifts x

i

[0℄ for i = 1; : : : ; N were

randomly generated as i.i.d. zero mean Gaussian random

variables with standard deviation 100 �s/timeslot.

A. Fully-Conne
ted Network

Figure 1 shows the ensemble averaged drift distan
e from


onsensus metri
 for N = 10 and N = 100 node networks

with stepsize � = 0:5 and varying overhearing probabilities

q 2 f0; 0:1; 0:25; 0:5g in fully-
onne
ted network. The q = 0


ase 
orresponds to 
onventional random symmetri
 gossip. It

is observed that when the overhearing probability q in
reases,

the 
onvergen
e rate of the distan
e from 
onsensus metri


also in
reases. We also observe that when the overhearing

probability q in
reases, the drift 
onvergen
e rate gap between

the system with a small number of nodes (N = 10) and the

system with a large number of nodes (N = 100) de
reases

due to the large number of overhearing nodes in the N = 100


ase. In Figure 1, we also show the ensemble averaged drift

distan
e from 
onsensus metri
 for random broad
ast [15℄

with stepsizes � 2 f0:1; 0:25g for an N = 10 node system.

Observe that the symmetri
 gossip system with overhearing

probability q = 0:5 has a better 
onvergen
e rate than the

random broad
ast system.
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Fig. 1. Average drift distan
e from 
onsensus metri
s for N = 10; 100 node

network with stepsize � = 0:5 and with different overhearing probability

q 2 f0; 0:1; 0:25; 0:5g in fully-
onne
ted network. Drift 
ompensation begins

at timeslot k = 10.

Figure 2 shows the ensemble averaged drift distan
e from


onsensus metri
 versus the number of message ex
hanges

for N = 10 node network with stepsize � = 0:5 and

with varying overhearing probabilities q 2 f0; 0:1; 0:25; 0:5g.

Re
all, for random symmetri
 gossip with overhearing nodes,

the number of messages transmitted in ea
h timeslot is always

two. For the random broad
ast system, in ea
h timeslot ea
h

node is sele
ted as a transmitter or a re
eiver equiprobably.

Hen
e the number of messages in ea
h timeslot is binomially



distributed with probability

1

2

and has a mean of

N

2

. In this

example with N = 10, the average number of messages

transmitted in ea
h timeslot is �ve. These results show that

random symmetri
 gossip with overhearing nodes signi�
antly

outperforms random broad
ast 
onsensus from the point of

view of number of message ex
hanges.
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Fig. 2. Average drift distan
e from 
onsensus metri
s for N=10 node network

s
enarios with stepsize � = 0:5 and with different overhearing probability

q 2 f0; 0:1; 0:25; 0:5g versus the number of message ex
hanges in fully-


onne
ted network.

B. Line or Ring Network

Figure 3 shows the ensemble averaged drift distan
e from


onsensus metri
 for N = 10 and N = 100 node networks

with stepsize � = 0:5 and varying overhearing probabilities

q 2 f0; 0:1; 0:25; 0:5g. Unlike the fully-
onne
ted network,

the 
onvergen
e rate of random symmetri
 gossip with over-

hearing nodes is not signi�
antly improved with respe
t to


onventional random symmetri
 gossip sin
e there are at most

two nodes that 
an overhear in ea
h timeslot.

C. Uniform Planar Network With Fixed Overhearing Radius

Figure 4 shows the ensemble averaged drift distan
e from


onsensus metri
 for N = 10 and N = 100 node networks

with stepsize � = 0:5 and varying overhearing probabili-

ties q 2 f0; 0:1; 0:25; 0:5g in a uniformly distributed planar

network with �xed overhearing radius. These results are for

one realization of the node lo
ations (whi
h were 
on�rmed

to form a weakly 
onne
ted graph) and are typi
al of the

results a
hieved with other realizations of the node lo
ations.

We assume that the planar region is a square with length

a = 100 m and width b = 100 m. We further assume that

the messaging radius is 
 = 100 m and the overhearing

radius is r = 50 m. From Figure 4, it is observed that

the drift 
onvergen
e rate improvement of the system with

large number of nodes (N = 100) is larger than that of the

system with small number of nodes (N = 10). Intuitively,

this is due to the fa
t that when ea
h node has a limited
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Fig. 3. Average drift distan
e from 
onsensus metri
s for N = 10; 100 node

network with stepsize � = 0:5 and with different overhearing probability

q 2 f0; 0:1; 0:25; 0:5g in line network. Drift 
ompensation begins at timeslot

k = 10.

overhearing range, in
reasing the number of nodes in the

system 
onsequently in
reases the number of nodes able to

overhear the messages ex
hanged in ea
h timeslot.
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Fig. 4. Average drift distan
e from 
onsensus metri
s for N = 10; 100 node

network with stepsize � = 0:5 and with different overhearing probability

q 2 f0; 0:1; 0:25; 0:5g in uniformly distributed planar network with �xed

overhearing radius. Drift 
ompensation begins at timeslot k = 10.

V. CONCLUSION

This paper studies random symmetri
 gossip with overhear-

ing nodes in wireless networks. Numeri
al results show that

random symmetri
 gossip with overhearing nodes 
an improve

the 
onvergen
e rate of symmetri
 gossip systems with signif-

i
ant gains o

urring when the network is highly-
onne
ted.

Parti
ularly, in fully-
onne
ted networks, overhearing nodes


an signi�
antly improve the 
onvergen
e rate of symmetri




gossip systems and provide 
onvergen
e rates better than

random broad
ast. A parti
ularly appealing feature of random

symmetri
 gossip with overhearing nodes is that these gains

are a
hieved without any in
rease in messaging overhead.

While this paper demonstrated the effe
tiveness of random

symmetri
 gossip with overhearing nodes via numeri
al re-

sults, it is also of interest to develop analyti
al results for the

optimum stepsize and bounds on the a
hievable 
onvergen
e

rates. In the 
ase of planar networks with randomly deployed

nodes, it may also be of interest to study the relationship be-

tween messaging energy and 
onvergen
e rate sin
e de
reasing

messaging energy leads to smaller messaging and overhearing

radii and, hen
e, slower 
onvergen
e to 
onsensus.
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