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Abstract—This paper considers consensus in wireless networks
with random symmetric gossip. During each timeslot, a pair of
nodes is randomly selected. These nodes then exchange messages
and adjust their states to reduce the distance from consensus in
the network. Since only two messages are exchanged and only
two nodes adjust their states in each timeslot, the convergence
rate of symmetric gossip to a consensus state is often prohibitively
slow (especially for networks with a large number of nodes). This
paper proposes an extension to the symmetric gossip consensus
model which takes advantage of the broadcast nature of wireless
transmissions. Specifically, this paper considers a scenario in
which some nodes can ‘“overhear” the transmissions of the
randomly selected node pair in each timeslot. These nodes
can use this overheard information to adjust their states for
“free”, i.e., without any additional messaging in each timeslot,
consequently improving convergence rates. This paper analyzes
the performance of random symmetric gossip with overhearing
nodes under several different network topologies. Numerical
results are also provided for consensus synchronization scenario.
These results show that overhearing nodes can significantly im-
prove the convergence rate of symmetric gossip systems without
increasing messaging overhead.

Index Terms—consensus, symmetric gossip, wireless networks,
synchronization

I. INTRODUCTION

Random consensus methods have been considered in [1]—
[15] and are attractive since consensus functions, e.g., dis-
tributed estimation or synchronization, can be embedded in
existing network traffic with random information flows. This
paper considers the random symmetric gossip consensus prob-
lem. In each timeslot, a pair of nodes is randomly selected
according to some distribution and exchange messages while
all other nodes remain silent. Each node in the randomly se-
lected pair uses the information from the other node in the pair
to adjust their state and improve the consensus metric of the
network. In this paper, we adopt a “distance from consensus”
metric, which is a measure of the state displacement from the
current average. Given a state x[k] = [z1[k],...,zn[k]]" €
RN at time k, the distance from consensus at time & is defined
as

1 — 2

dlk] := llzlk] = Inz[K]ll2 (D
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where Z[k] = 4 Zf\;l z;[k] and 1x € RN is a vec-
tor of ones. In the context of synchronization, the state
x[k] corresponds to the drifts and/or offsets of the clocks
in the network. It has been shown that, under certain
conditions, the distance from consensus converges almost
surely in a mean squared sense at an exponential rate, e.g.,
P {limk%oo(d[k])l/’c = /\2} = 1 for a given constant A\ [9],
[10]. In asymmetric and symmetric gossip systems, however,
the convergence rate can be prohibitively slow (especially for
systems with a large number of nodes) due to the fact that only
one or two nodes adjust their states in each timeslot. Random
broadcast consensus [15] can improve the convergence rate of
consensus systems at the cost of increased messaging overhead
in each timeslot.

In this paper, we propose an extension of the random
symmetric gossip consensus model which takes advantage
of the broadcast nature of wireless transmissions, potentially
providing convergence rates similar to random broadcast with-
out the additional messaging overhead of random broadcast.
Actually, the “overhearing” strategy has been studied in some
prior literatures and has wide applications. In [16], the authors
studied a two-hop interference channel with the help of two
relay nodes and assumed that the transmissions of the relays in
the second hop can be overheard by the sources in the first hop.
Strategies were designed to optimally consolidate the dual role
of the relay signal: conveying the message to its corresponding
destination versus sending a feedback signal to increase the
capacity of the first hop. In [17], the authors studied the
naming game (NG), which describes the agreement dynamics
of a population of N agents interacting locally in pairs leading
to the emergence of a shared vocabulary, and introduce the
concept of overhearing. Results showed that the population
of agents reaches a faster agreement with a significantly low-
memory requirement with overhearing strategy.

Specifically, this paper considers a scenario called “random
symmetric gossip with overhearing nodes” in which some
nodes can “overhear” the transmissions of the randomly se-
lected node pair in each timeslot. In timeslot k£, when node i
transmits a message to node j and then node j transmits
a response to node ¢, other nodes who are in the vicinity
of node ¢ and node j may overhear one or both of these
messages. Using this “free” information, these overhearing
nodes can also adjust their states to improve the consensus



metric. Intuitively, the convergence rate is improved since
more nodes adjust their states in each timeslot.

This paper studies the convergence rate of random sym-
metric gossip with overhearing nodes in three scenarios: (1)
fully-connected networks, (2) line or ring networks, and (3)
uniformly distributed planar networks with fixed overhearing
radius. Numerical results are also provided to demonstrate the
performance of random symmetric gossip with overhearing
nodes and convergence rates are compared to conventional
random symmetric gossip systems without overhearing nodes
as well as random broadcast consensus systems [15]. The
results show that random symmetric gossip with overhearing
nodes can provide a convergence rate similar to random
broadcast consensus without the additional messaging over-
head associated with random broadcast consensus. In fact,
comparing the convergence rates from the point of view of
number of message exchanges, our results show that random
symmetric gossip with overhearing nodes outperforms random
broadcast consensus in the scenarios considered.

II. SYSTEM MODEL

We assume a connected time-slotted wireless network with
N nodes denoted as N' = {1,..., N}. The topology of the
network is assumed to be fixed. In each timeslot, the node pair
(i, 7) is randomly selected and exchange messages. We denote

£ = {(i,j) € N? : i< jand (i,j) can exchange messages}

as the set of all distinct node pairs in the network. Due to our
focus on symmetric gossip, we do not distinguish between the
pair (i,7) and the pair (j,4) and henceforth assume ¢ < j.
We assume that each node pair is selected in each timeslot
independently and with equal probability. Specifically,

p (i,j) €&

Prob{(i, j) selected} = {0 otherwise

where p = %‘ The sets O; and O; denote the sets of nodes
able to overhear node ¢ and node j, respectively. Note that O;
and O; are not disjoint in general. We assume that each node
in the sets O; and O; has a probability ¢ of overhearing the
transmissions from node ¢ and node j, respectively. Setting
q = 0 prevents overhearing and reduces the system model to
the conventional symmetric gossip case without overhearing
nodes.

The following sections analyze the behavior of random sym-
metric gossip with overhearing nodes in three scenarios: (1)
fully-connected networks, (2) line or a ring networks, and (3)
uniformly distributed planar networks with fixed overhearing
radius.

A. Fully-Connected Network

In this type of network, all of the nodes in the network are
located close enough to each other such that any pair of nodes
has the ability to exchange messages. The set of distinct node
pairs is thus

52{(1,2),...,(].,N),(2,3),...,(2,N),...,(N—].,N)}

with || = & 22’ N The set of potential overhearing nodes of

node i is O; = N\ {i,j} and the set of potential overhearing
nodes of node j is O; = N\ {3,j} = O;.

B. Line or Ring Network

In this scenario, all N nodes are located on a line or a ring.
In each timeslot, it is assumed that only two adjacent nodes
can exchange messages.

For a line network, the set of distinct node pairs is given as

£=1(1,2),(2,3),...,(N —1,N)}

with |€] = N — 1. The set of potential overhearing nodes of
node ¢ and node j =i + 1 can be expressed respectively as

0; = {Q =1 .
{i — 1} otherwise
and
0i+1:{®. i:N._l
{i+2} otherwise.
A ring network is similar to the line network except that

node 1 can also exchange messages with node V. In this case,
the set of distinct node pairs is given as

£=1(1,2),(2,3),....,(N —1,N),(1,N)}

with |£] = N. The set of potential overhearing nodes of node
1 and node 7 = ¢ + 1 can be expressed respectively as

Oi:{{N} i=1

{i — 1} otherwise

and

{1} i=N-1
Oit1 =23 . .
{i+2} otherwise.

C. Uniform Planar Network With Fixed Overhearing Radius

In this scenario, all nodes are uniformly distributed in a
fixed region, say a rectangle with length a and width b. If we
use (z;,y;) to denote the coordinates of the ith node, then we
have z; ~ U(0,a) and y; ~ U(0,b) for all i € N'. We also
assume that all coordinates are independently generated. We
assume that node ¢ can only exchange messages with nodes
inside a circle with center (z;,y;) and radius c. If we use
p(i, j) to denote the distance between node i and node j, then
the set of nodes able to exchange messages with node ¢ can
be expressed as & = {j € N\ {i} : p(i,j) < c}. The set of
distinct node pairs follows as

N
€= J{G,4) e N?:j>iand p(i,j) < c}.

i=1
We also assume that only the nodes inside a circle with center
(z4,y;) and radius 7 < ¢ can overhear node 4. Thus the set of
nodes which can potentially overhear node ¢ can be expressed
as O; = {L € &\ {j} : p(i,£) < r} and the set of nodes
which can potentialy overhear node j can be expressed as

0; = {t € &\ {i} : p(i,0) < 1}.



III. CONSENSUS DYNAMICS

In this section, we describe the consensus dynamics of
random symmetric gossip with overhearing nodes. In general,
the state vector x[k] € RY has random dynamics governed
by

zk +1] = (In + pR[E])x[k] (2)

where Iy is an N x N identity matrix, g > 0 is a stepsize
parameter, and R[k] € RV*¥ is a matrix randomly drawn
from some finite set R satisfying the property R[k]1y = 0
for all R[k] € R where 1y is an N x 1 vector of ones. In the
context of synchronization, the state vector x[k] corresponds
to clock drifts and/or offsets and the R[k] matrices correspond
to clock corrections resulting from random interactions among
the nodes in the network.

In a conventional symmetric gossip system, conditioning on
the node pair (7, j), the update matrix R[k] can be expressed
as

R[k] = ei(e; )"

-
—ei) tejlei—e;
where e; is the i*" standard basis vector with all elements
equal to zero except the i*!' element which is equal to one. In
the case of random symmetric gossip with overhearing nodes,
the update matrix R[k] can be expressed as

Rlk]=ei(ej; —€;)" +ejle; —e€j)"

where Q; C O; and Q; C O; are the nodes that overhear the
messages from node ¢ and node j, respectively. Although O;
and O; are deterministic and fixed, the sets Q; and Q; are ran-
dom and depend on the overhearing probability parameter gq.
Also note that, even though we are considering a symmetric
gossip system from the perspective of nodes ¢ and j, from the
perspective of the overhearing nodes the information flow is
asymmetric.

For random broadcast [15], in each timeslot each node
chooses equiprobably whether to transmit or receive. Hence,
the average number of messages transmitted in each timeslot is
%. Assuming a fully-connected network so that all receiving
nodes receive the transmissions of all transmitting nodes and
letting 7[k] C A denote the set of transmitting nodes in
timeslot k, the update matrix R[k] can be expressed as

Rk= Y Y ejlei—e)'.

FEN\TIE] i€T[k]
IV. NUMERICAL RESULTS

This section presents numerical results demonstrating the
effectiveness of random symmetric gossip with overhearing
nodes in the context of drift synchronization in a wireless
communication network. Specifically, the goal is to synchro-
nize the frequencies of all of the clocks in the network
through consensus techniques. In each timeslot, the randomly
selected node pair (i,j) exchange messages, estimate their
relative clock drifts, and then adjust their drifts to improve
the consensus metric as discussed in [18]. The distance from

consensus metrics is computed for the drifts in each timeslot
and ensemble averaged over 1000 runs. In all of the results
in this section, the initial drifts z;[0] for i = 1,..., N were
randomly generated as i.i.d. zero mean Gaussian random
variables with standard deviation 100 ps/timeslot.

A. Fully-Connected Network

Figure 1 shows the ensemble averaged drift distance from
consensus metric for N = 10 and N = 100 node networks
with stepsize ¢ = 0.5 and varying overhearing probabilities
g € {0,0.1,0.25,0.5} in fully-connected network. The ¢ = 0
case corresponds to conventional random symmetric gossip. It
is observed that when the overhearing probability g increases,
the convergence rate of the distance from consensus metric
also increases. We also observe that when the overhearing
probability ¢ increases, the drift convergence rate gap between
the system with a small number of nodes (N = 10) and the
system with a large number of nodes (N = 100) decreases
due to the large number of overhearing nodes in the N = 100
case. In Figure 1, we also show the ensemble averaged drift
distance from consensus metric for random broadcast [15]
with stepsizes p € {0.1,0.25} for an N = 10 node system.
Observe that the symmetric gossip system with overhearing
probability ¢ = 0.5 has a better convergence rate than the
random broadcast system.
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Fig. 1. Average drift distance from consensus metrics for N = 10, 100 node
network with stepsize p = 0.5 and with different overhearing probability
q € {0,0.1,0.25, 0.5} in fully-connected network. Drift compensation begins
at timeslot £ = 10.

Figure 2 shows the ensemble averaged drift distance from
consensus metric versus the number of message exchanges
for N = 10 node network with stepsize 4 = 0.5 and
with varying overhearing probabilities ¢ € {0,0.1,0.25,0.5}.
Recall, for random symmetric gossip with overhearing nodes,
the number of messages transmitted in each timeslot is always
two. For the random broadcast system, in each timeslot each
node is selected as a transmitter or a receiver equiprobably.
Hence the number of messages in each timeslot is binomially



distributed with probability % and has a mean of % In this
example with N = 10, the average number of messages
transmitted in each timeslot is five. These results show that
random symmetric gossip with overhearing nodes significantly
outperforms random broadcast consensus from the point of
view of number of message exchanges.
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Fig. 2. Average drift distance from consensus metrics for N=10 node network
scenarios with stepsize ;1 = 0.5 and with different overhearing probability
g € {0,0.1,0.25,0.5} versus the number of message exchanges in fully-
connected network.

B. Line or Ring Network

Figure 3 shows the ensemble averaged drift distance from
consensus metric for N = 10 and N = 100 node networks
with stepsize p = 0.5 and varying overhearing probabilities
g € {0,0.1,0.25,0.5}. Unlike the fully-connected network,
the convergence rate of random symmetric gossip with over-
hearing nodes is not significantly improved with respect to
conventional random symmetric gossip since there are at most
two nodes that can overhear in each timeslot.

C. Uniform Planar Network With Fixed Overhearing Radius

Figure 4 shows the ensemble averaged drift distance from
consensus metric for N = 10 and N = 100 node networks
with stepsize 4 = 0.5 and varying overhearing probabili-
ties ¢ € {0,0.1,0.25,0.5} in a uniformly distributed planar
network with fixed overhearing radius. These results are for
one realization of the node locations (which were confirmed
to form a weakly connected graph) and are typical of the
results achieved with other realizations of the node locations.
We assume that the planar region is a square with length
a = 100 m and width b = 100 m. We further assume that
the messaging radius is ¢ = 100 m and the overhearing
radius is r = 50 m. From Figure 4, it is observed that
the drift convergence rate improvement of the system with
large number of nodes (N = 100) is larger than that of the
system with small number of nodes (N = 10). Intuitively,
this is due to the fact that when each node has a limited
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Fig. 3. Average drift distance from consensus metrics for N = 10, 100 node
network with stepsize ;4 = 0.5 and with different overhearing probability
g € {0,0.1,0.25,0.5} in line network. Drift compensation begins at timeslot
k = 10.

overhearing range, increasing the number of nodes in the
system consequently increases the number of nodes able to
overhear the messages exchanged in each timeslot.
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Fig. 4. Average drift distance from consensus metrics for N = 10, 100 node
network with stepsize ;1 = 0.5 and with different overhearing probability
g € {0,0.1,0.25,0.5} in uniformly distributed planar network with fixed
overhearing radius. Drift compensation begins at timeslot £ = 10.

V. CONCLUSION

This paper studies random symmetric gossip with overhear-
ing nodes in wireless networks. Numerical results show that
random symmetric gossip with overhearing nodes can improve
the convergence rate of symmetric gossip systems with signif-
icant gains occurring when the network is highly-connected.
Particularly, in fully-connected networks, overhearing nodes
can significantly improve the convergence rate of symmetric



gossip systems and provide convergence rates better than
random broadcast. A particularly appealing feature of random
symmetric gossip with overhearing nodes is that these gains
are achieved without any increase in messaging overhead.

While this paper demonstrated the effectiveness of random
symmetric gossip with overhearing nodes via numerical re-
sults, it is also of interest to develop analytical results for the
optimum stepsize and bounds on the achievable convergence
rates. In the case of planar networks with randomly deployed
nodes, it may also be of interest to study the relationship be-
tween messaging energy and convergence rate since decreasing
messaging energy leads to smaller messaging and overhearing
radii and, hence, slower convergence to consensus.
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