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Abstract— In wireless networks, intermediate nodes are
often used as relays to reduce the transmission energy
required to deliver a message to an intended destination.
The selfishness of autonomous nodes, however, raises con-
cerns about their willingness to expend energy to relay
information for others. This paper considers the effect of
selfishness on energy efficiency using a non-cooperative
game theoretic approach. A two-source relaying game is
formulated for both non-fading and fading scenarios. We
show that cooperative transmission with optimum energy
allocation is a Nash Equilibrium in non-fading channels
when the sources are sufficiently patient. In fading channels,
cooperative transmission with optimum energy allocation
is also a Nash Equilibrium when a ceiling is applied to
the relay energy of each source. Simulation results show
that sources acting in their own self-interest can achieve an
energy efficiency close to that of centrally optimized energy
allocation in many cases.

I. Introduction

In energy limited wireless networks, sources often rely on
intermediate users to serve as relays in order to improve per-
formance or reduce energy consumption [1], [2]. The popular-
ity of self-organizing ad hoc networks and the emergence of
programmable wireless devices raise doubts on the assumption
that each node will always be willing to offer help when needed.
Some work in this area has considered a game theoretic frame-
work to analyze the trade off between an individual source’s
interest and system performance [3]. Especially, the problem of
whether cooperation can exist without incentive mechanisms is
considered in [4]-[9]. Most of the work in this area has focused
on the network layer. It is claimed in [4] that cooperation can
be stimulated provided that no node has to forward more traffic
than it generates. The nodes are classified into different energy
classes and an energy efficient Nash Equilibrium strategy is
proposed in [5]. Based on game theory and graph theory,
the conditions when cooperation solely based on the nodes’
self-interest can exist are proposed in [6]. A joint analysis of
cooperation stimulation and security is given in [7] and a set of
reputation-based cheat-proof and attach-resistant cooperation
stimulation strategies are derived.

A few work investigates the effect of nodes’ selfishness in the
physical layer. It is shown in [8] that a mutually cooperative
Nash Equilibrium can always be obtained when convex utility
functions are used in Rayleigh fading channels for decode-and-
forward protocol. Lai and Gamal [9] prove that full cooperation
is possible by using a vanishingly small fraction of altruistic
nodes .

In this paper, we investigate the problem of whether coop-
eration can exist without incentive mechanisms or altruistic
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nodes of the two-source amplify-and-forward protocol in both
non-fading and fading scenarios. In both cases the sources are
required to satisfy a instantaneous SNR constraint and are
assumed to be rational and self-interested. The utility of each
source is based on its own energy consumption. We model both
scenarios as an infinitely repeated two-source relaying game.
In the non-fading scenario, our results show that cooperation
with optimum energy allocation can exist given sources are
sufficiently patient. In the fading scenario, we propose a condi-
tional trigger cooperative strategy and show that this strategy
is a Nash Equilibrium of the infinitely repeated game. An
important feature of the conditional trigger strategy is that the
sources cooperate using optimum resource allocation but with
a ceiling placed on the optimized relay energy. If either source is
asked to transmit with relay energy greater than their ceiling in
a stage game, both sources use direct transmission in that stage
game. We show that this ceiling goes to infinity as the sources
become more patient. Our results show that sources using the
conditional trigger strategy can often achieve an overall system
energy efficiency close to that of a centrally-optimized system,
especially when the sources are patient.

II. System Model

We consider the 4 node cooperative transmission system
illustrated in Figure 1. Source node 1 and source node 2 take
turns to transmit to destination node 1 and 2 respectively.
Each source node can potentially help the other by relaying
the transmission to the intended destination. The quantities
Gir, Gis and H denote the amplitudes of the squared channel
gains, normalized with respect to channel noise.

D2 S2 D1S1
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Fig. 1. System model.

We assume that the two sources cooperate through the half-
duplex “amplify and forward” (AF) protocol shown in Figure 2.
In this protocol, the transmission session is divided into two
transmission intervals for source 1 and source 2 respectively.
Each transmission interval is further divided into two time slots
of equal duration. In S1’s transmission interval, S1 will first
send out a relay request to S2. At this point, one of two things
can happen:



1) S2 responds to the relay request within some waiting
time t, indicating that it will cooperate. In this case, S1

transmits using the optimum cooperative source energy
E∗
1s in time slot 1. At the same time S2 listens. In time

slot 2, S2 forwards to D1 the signal overheard in the first
time slot with the optimized relay energy E∗

2r.
2) S2 does not respond to the relay request within the

waiting time t. In this case, S1 will assume that S2

is not willing to cooperate. S1 transmits with direct
transmission energy E1.

The same sequence of events applies in S2’s transmission inter-
val.

S1 transmits

S2 does not 
transmit

S1 transmits

S2 transmitsS2 transmitsS2 listens

S1 listensS1 does not 
transmit

 transmission interval of S1  transmission interval of S2

 transmission session

Fig. 2. Two-source amplify and forward protocol.

To facilitate analysis in the following sections, we make the
following assumptions:

A1: Both sources must satisfy the SNR constraint ρ in each
transmission session.

A2: The squared channel amplitudes in each transmission
interval are known at both sources and destinations.
This implies that the sources can dynamically allocate
transmit energies according to the instantaneous channel
state and that the destinations can combine the two
observations using maximal ratio combining to maximize
the SNR.

A3: Fading channels are assumed to be quasi-static in the
sense that the channel realization remains constant over
the duration of a transmission interval but is random for
different transmission sessions.

III. Optimum Energy Allocation for AF Cooperation

Using the results in [10], we know that, for i, j ∈ {1, 2} with
j �= i, the SNR of an AF cooperative communications system
can be expressed as

SNRi = GisEis +
HEisGjrEjr

1 + HEis + GjrEjr
(1)

where Eis is the source transmission energy and Ejr is the
relay transmission energy. Under a fixed SNR constraint ρ,
this result can be used to compute the energy reduction at
Si obtained through optimum cooperative energy allocation,
which is denoted as αi.

αi =
ρ

Gis
|{z}

Ei

− ρ

H + Gis
− (ρH)1/2(Gis + (1 + ρ)H)1/2

(H + Gis) (H(Gjr − Gis) + GisGjr)1/2

| {z }

E∗
is

for sources i, j ∈ {1, 2} with j �= i. Ei denotes the direct
transmission energy required to satisfy the SNR threshold. E∗

is

denotes the optimum source energy to satisfy the SNR threshold
when Sj agrees to help. The quantity βi = E∗

ir is the optimized
relaying energy used by a source to cooperate (the cost of
cooperation). βj can be computed from (1) and E∗

is.

IV. Two-source relaying game

We can consider the system in Figure 1 in the context of a
two-source relaying game. Source 1 and source 2 formulate the
player set S = {S1, S2}. They each have the strategy space
Θi = {R, N}, where “R” denotes “relay” at the optimum
resource allocation relay energy and “N” denotes “do not
relay”. We present the payoff function using the payoff matrix
shown in Table I. The quantity αi = Ei−E∗

is denotes the energy
reduction obtained by Si with respect to the direct transmission
energy required to satisfy the SNR constraint when the other
source cooperates with Si. Clearly αi ≥ 0 and βi ≥ 0. Finally,
the quantity αi−βi is the net energy gain of Si under optimum
energy allocation.

θ2=N θ2=R
θ1=N 0, 0 α1, − β2

θ1=R −β1, α2 α1 − β1, α2 − β2

TABLE I

Two-source relaying game payoff matrix

In the n-source game, the set of strategies (θ∗
1 , ..., θ∗

n) is a
Nash Equilibrium (NE) if, for each source i, θ∗

i is source i’s
best response to θ∗

−i, where θ−i denotes the strategies of all
the sources except source i. It can be presented as [11]

πi(θ
∗
i , θ∗

−i) ≥ πi(θi, θ
∗
−i)

where πi is the payoff function (utility) of Si.
The concept of Nash Equilibrium is intuitively explained

as follows: if all of the sources are following NE strategies,
no source can increase their payoff by deviating from the NE
strategy. Our goal is to find Nash Equilibria of the two-source
relaying game in the case of non-fading and fading channels and
to identify the conditions under which an equilibrium based on
cooperation exists.

A. Non-fading Channels

Denote the static two-source relaying game as the stage
game of the repeated game. In our system model, a stage
game corresponds to a transmission session. In the non-fading
channels, when the two-source relaying game is repeated, the
payoff matix in Table I will remain the same in each stage
game. It is easy to check that for the one-shot or finite repeated
two-source relaying game, the only NE is θ∗ = (N, N) in each
stage game. The situation changes, however, when the game is
repeated infinitely. The goal of the sources now is to maximize
the payoff that they accumulate over time, that is, they are
willing to secure a high-payoff in the next stage by cooperating.
Denote the payoff of Si of tth stage game as πit. Assume that
for each time t, the outcomes of the t−1 preceding plays of the
stage game are known before the present stage begins. Then
we are ready to define the accumulated payoff Πi of Si as

Πi =
∞X

t=1

δt−1πit, (2)

where 0 ≤ δ ≤ 1 and t is the time index of the game. The
discount factor δ represents the degree to which the payoff of
each transmission session is discounted relative to the previous
transmission session. We assume both sources have the same
δ. In our case, δ can be looked as a measure of the mobility,
which is the probability of still having the other source in
the neighborhood after the current transmission session. It is



reasonable to assume that when the sources begin the game,
they do not know when the game will end. Thus we can model
the finite repeated game with an unpredictable end as an
infinite repeated game with discounted future payoffs.

Proposition 1: There exists a Nash Equilibrium based on
cooperation with optimum energy allocation for the infinitely
repeated two-source relaying game in non-fading channels if
and only if

∀ i ∈ {1, 2} max
i∈{1,2}

„
βi

αi

«
≤ δ ≤ 1. (3)

The proof is quite similar with those in [11](pp. 88-92). Here
we omit the proof due to space limitations.

Proposition 1 has implied that αi ≥ βi for both sources.
It denotes the mutual beneficial channel conditions that both
sources can save energy by cooperation with optimum energy
allocation. A source that can not have individual benefit by
cooperation will always play N regardless of the interest of
others. Thus cooperation can not be stimulated unless the
mutual cooperation condition (3) is satisfied.

B. Fading Channels

To analyze the two-source relaying game in the case of fading
channels, we model our system as an infinitely repeated game.
The payoff matrix of each stage game corresponds to one
channel state realization of each transmission session. Each
element in the payoff matrix of Table I is a random variable
and will change with each new channel state realization in each
stage game. We model the payoffs in the payoff matrix, αi

and βi, as ergodic random processes. Denote the realizations
of αi and βi at time t as α

(t)
i and β

(t)
i respectively. Since the

payoff matrix will change with each stage game, both sources
are not able to know the exact value of the payoff matrix in the
future. To investigate the conditions of when cooperation can
be stimulated between selfish nodes, we propose a conditional
trigger strategy.

Suppose Si adopts the conditional trigger strategy. In each
stage game, Si’s strategy can be expressed as Figure 3. First,
check the value of both sources’ optimum relay energy β

(t)
i and

β
(t)
j . If either of their relay energy exceeds their corresponding

ceiling value, Ci and Cj , Si plays N . Otherwise, Si checks the

value of β
(t)
i . If it is equal to 0 (notice that in our definition

of βi, βi can not be less than 0), then Si plays N (Sj uses
direct transmission as specified by optimum energy allocation
). If β

(t)
i > 0 and neither sources has defected in all the previous

games, Si plays R. Otherwise, Si plays N .
Here we do not simply consider the behavior of “not relay”

as “defect”. Si is considered to “defect” in stage game t if all
of the conditions are satisfied for Si to play R but, instead,
Si plays N . For the reason that only the “not relay” behavior
under certain conditions will be considered “defect” and thus
trigger non-cooperation forever after, we call our strategy “con-
ditional trigger strategy”. If Si defects, it obtains an additional
payoff in the current stage game since it does not expend any
relaying energy. This short-term gain, however, is obtained at
the cost of the loss of future payoffs since defection triggers
non-cooperation for all future games.

Proposition 2: If Ci satisfies

Ci =
δ

1 − δ
E

ˆ
(αi − βi)I{β1≤C1}I{β2≤C2}

˜
(4)

for both i = 1 and i = 2, then the conditional trigger strategy
specified in Figure 3 is a Nash Equilibrium.

obtain channel state in
transmission session t

calculate optimum
energy allocations and

α1
(t),α2

(t),β1
(t),β2

(t)

β1
(t)>C1 or

β2
(t)>C2 ?

play N

no yes

play N

no βi
(t)>0 ?

yes

has 
either source 

defected in any 
previous stage

game?

play R

no yes

play N

(one or both sources
have incentive to defect)

(optimum energy allocation
specifies that Sj should

use  direct transmission)

(Si punishes Sj for defection)(Si assists Sj via 
cooperative transmission)

Fig. 3. Si’s conditional trigger strategy in the tth stage game.

Define

I{x≤y} =

(
1 x ≤ y

0 x > y.

Proof:
For the stages that do not satisfy βi ≤ Ci, ∀i ∈ {1, 2}, since

Si plays N , Sj ’s best response is also to play N . When βi ≤ Ci,
it is trivial to show that when Si should use direct transmission
(specified by optimum energy allocation), Sj does not need to
relay. For the reason that Si plays N forever if either sources
has defected previously, Sj ’s best response is also to play N
forever once Si or Sj defect. The rest is to determine Sj ’s best
response when the current stage game satisfies the condition of
βi ≤ Ci, ∀i ∈ {1, 2} and neither sources has defected in the
previous games.

Suppose the current stage is t0 and Sj plays N , then Sj will

get a payoff of α
(t0)
j but will trigger (N, N) forever after. Hence

the present value of the accumulated payoff is

ΠjN = α
(t0)
j + δ · 0 + δ2 · 0 + ... = α

(t0)
j (5)

On the other hand, playing R will yield a payoff of α
(t0)
j −β

(t0)
j

and then lead to the exactly same choice in the next stage. We
have the present value of the accumulated payoff as

ΠjR = (α
(t0)
j − β

(t0)
j )+

δ · (α(t1)
j − β

(t1)
j )I{β

(t1)
j ≤Cj}

I{β
(t1)
i ≤Ci}

+ ...
(6)

Although Sj does not know the exact value of payoffs in the
payoff matrix in the future stage games, Si knows what can
expect. Hence equation (6) can be rewritten as

ΠjR = α
(t0)
j − β

(t0)
j + δ · E[(αj − βj)I{βj≤Cj}I{βi≤Ci}] + ...

= α
(t0)
j − β

(t0)
j + δ

1−δ
E[(αj − βj)I{βj≤Cj}I{βi≤Ci}]



Notice that Cj satisfies the function (4), the above equation
can be rewritten as

ΠjR = α
(t0)
j − β

(t0)
j + Cj (7)

Given the condition of βi ≤ Ci, ∀i ∈ {1, 2}, we know from
(5) and (7) that ΠjR must be no less than ΠjN . In this case,
Sj has no strict incentive to defect in the stage game. Hence
given that in the first game and in any stage game that all the
preceding stage games’ outcomes have no defective behavior,
Sj ’s best response is to play R. The same analysis is applied to
Si. Hence it is a Nash Equilibrium for both sources to adopt
the conditional trigger strategy of the infinitely repeated game
in fading channels given both C1 and C2 satisfy (4).

Proposition 2 implies that for the fading channel scenarios,
sources decide their moves based both on the instantaneous
value of the payoff matrix, βi and the statistics of the future
payoffs, Ci. Intuitively, Ci can be looked as the ceiling value
of the relay energy. Its value can be decided by the function
(4). If Si’s relay energy exceeds the ceiling Ci, it means that
the optimum energy allocation requires a large relay energy
from Si to help Sj . In this case, the cost in the current stage
of playing R is so much that the expected future payoff is
not tempting anymore. Thus a rational source will have the
incentive to defect. However, the payoff matrix is also known
by Sj . Knowing that Si will not cooperate, Sj ’s best response
is also not to cooperate. The no-cooperate behavior here is not
considered “defection” and does not trigger non-cooperation
forever. In the conditional trigger strategy, trigger will only
happen if one or both players do not cooperate with optimum
energy allocation strategy when both players has no incentive
to defect in the stage game.

Now we consider the special case of δ = 1. δ = 1 implies that
both sources are infinitely patient, i.e. the energy they spend in
the future has the same importance as the energy they spend
now or both sources are relative static (none of them have the
idea of when they will run out of each other’s neighborhood ).
As long as mini∈{1,2} E(αi − βi) ≥ 0, the ceiling value Ci goes
to infinity when δ → 1 (refer to (4)). In this case, the Nash
Equilibrium strategy becomes the subtree of figure 3 where we
always do optimum resource allocation (since the ceilings are
never exceeded).

For Rayleigh fading, the expect value of αi goes to infinity.
This implies that even if δ is very small, the long term benefit
of mutual cooperation with optimum energy allocation is still
very large. The conditions in proposition 2 will be satisfied.
Rational sources in a Rayleigh fading environment will choose
to cooperate with optimum energy allocation to achieve high
payoff in the long run.

V. Simulation Results

This section demonstrates the impact of sources’ selfish
behavior on energy efficiency with respect to centrally opti-
mized energy allocation under path loss channels and lognormal
fading channels. The distance between the two destinations
in Figure 1 is normalized as 1. In the path loss model, the
normalized channel gain is given as H = d−γ

H , where dH is the
distance between source 1 and source 2 and γ is the channel
attenuation exponent. Gis and Gir are defined in the same
way. For lognormal fading channels, the channel states

√
Gis,√

Gir and
√

H are lognormal distributed random variables
with means μGis = 1/dγ

Gis
, μGir = 1/dγ

Gir
and μH = 1/dγ

H ,
respectively. For both channel models, ρ = 1.

Figure 4 shows the region that cooperation is “naturally”
encouraged in a wireless system under path-loss channels with
different channel attenuation exponents. The results show that
the region expands with γ, which indicates that with more
sever channel attenuation, cooperation with optimum energy
allocation is more preferable than direct transmission.

The model in Figure 5 is used to demonstrate the impact of
sources’ selfishness on energy efficiency. In this model, S1 and
S2 is located on the line connecting the two destinations with
dG1r = 0.25. Energy efficiency is investigated while S2 moves
between S1 and D1. All of the following results assume γ = 4.

Figure 6 shows the discounted total saved energy of grim
trigger strategy [11] and centrally optimized energy allocation
in the path loss channels. When dH is small, dG2r is large. S2’s
relay energy required by optimum energy allocation exceeds
the energy S2 saved by help from S1. In this case, S2 refuses
to relay. Thus no cooperation is stimulated by grim trigger
strategy. When S2 moving toward D1, the required relay energy
of S2 becomes smaller and finally S2 falls into the region where
mutual benefit occurs. Cooperation with optimum energy allo-
cation is stimulated and the discounted total saved energy of
grim trigger strategy merges to the centrally optimized case.

Figure 7 shows the average discounted total saved energy
of conditional trigger strategy in lognormal fading channels
with dH = 0.4. Centrally optimized energy allocation strategy
is also included for comparison. Here “the average discounted
total saved energy” denotes the discounted total saved energy
averaged over channel distributions. The results show that
the energy gap between the conditional trigger strategy and
centrally optimized strategy becomes smaller as δ becomes
larger. Both strategies merge as δ → 1.

Figure 8 shows the fraction of the stage games in which
cooperation with optimum energy allocation (OEA) is stim-
ulated with conditional trigger strategy. The fraction of the
stage games using cooperation with optimum energy allocation
increases with δ. As δ → 1, sources choose to cooperate with
optimum energy allocation in almost all the stage games. In
this case, the conditional trigger strategy is almost as energy
efficient as the centrally optimized case.

VI. Conclusion

This paper considers the problem of under what condi-
tions cooperation can be stimulated between rational and self-
interest sources. A two-source relaying game is formulated for
both non-fading and fading scenarios. We show that coopera-
tive transmission with optimum resource allocation is a Nash
Equilibrium in non-fading channels when the sources are suf-
ficiently patient. In fading channels, cooperative transmission
with optimum resource allocation is also a Nash Equilibrium
when a ceiling is applied to the relay energy of each source.
Simulation results show that sources acting in their own self-
interest can achieve an energy efficiency close to that of cen-
trally optimized energy allocation in many cases.
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source 1 and source 2) in path loss channels with γ = 4.

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

δ

A
ve

ra
ge

 D
is

co
un

te
d 

T
ot

al
 S

av
ed

 E
ne

rg
y

 

 
conditional trigger
centrally optimized

Fig. 7. Average discounted total saved transmission energy versus
δ in lognormal fading channels with γ = 4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

δ

F
ra

ct
io

n 
of

 S
ta

ge
 G

am
es

 U
si

ng
 C

oo
pe

ra
tio

n 
w

ith
 O

E
A

 

Fig. 8. The fraction of stage games using cooperation with optimum
energy allocation versus δ.


