ECE504 Homework Assignment Number 2
Due by 8:50pm on 30-Sep-2008

Tips: Make sure your reasoning and work are clear to receive full credit for each problem.

1. 3 pts. For \(Q \in \mathbb{C}^{n \times n} \) and \(\alpha \in \mathbb{C} \), compute \(\det(\alpha Q) \) and \(\text{adj}(\alpha Q) \) in terms of \(\alpha, \det(Q) \) and \(\text{adj}(Q) \). What does this say about \((\alpha Q)^{-1} \) for \(\alpha \neq 0 \) and \(\det(Q) \neq 0 \)?

2. 4 pts. Suppose you are given a lumped discrete-time LTI system described by the state space equations
 \[
 x[k+1] = Ax[k] + Bu[k] \\
 y[k] = Cx[k] + Du[k].
 \]
 \((1) \)
 Now suppose we define \(v[k] = Px[k] \) for all \(k \) where \(P \in \mathbb{R}^{n \times n} \) is known and \(P \) is invertible such that \(x[k] = P^{-1}v[k] \).

 (a) Find \(\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D} \), in terms of \(A, B, C, D, \) and \(P \) such that \(v[k+1] = \tilde{A}v[k] + \tilde{B}u[k] \)
 \[
 y[k] = \tilde{C}v[k] + \tilde{D}u[k].
 \]
 \((2) \)
 (b) Show that \((1) \) and \((2) \) have the same transfer function by showing that
 \[
 \tilde{C}(zI - \tilde{A})^{-1}\tilde{B} + \tilde{D} = C(zI - A)^{-1}B + D.
 \]
 Hint: Recall that \((XY)^{-1} = Y^{-1}X^{-1} \).

3. 6 pts. Suppose \(A = \begin{bmatrix}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_0 & -a_1 & -a_2 & \ldots & -a_{n-2} & -a_{n-1}
\end{bmatrix}, \)
 \(B = [0,0,\ldots,0,1]^\top, \)
 \(C = [b_0,b_1,\ldots,b_{n-1}], \) and \(D = 0. \) Also suppose that
 \[
 \hat{g}(s) = \frac{b_{n-1}s^{n-1} + \cdots + b_1s + b_0}{s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0},
 \]
 (a) Is \(\{A,B,C,D\} \) is a state-space realization for the single-input single-output transfer function \(\hat{g}(s) \)?
 (b) Let \(\tilde{A} = A^\top, \tilde{B} = C^\top, \tilde{C} = B^\top, \) and \(\tilde{D} = D. \) Show that \(\{\tilde{A},\tilde{B},\tilde{C},\tilde{D}\} \) is a state-space realization for the single-input single-output transfer function \(\hat{g}(s) \).
 (c) Find two different state-space realizations for \(\hat{g}(s) = \frac{s^3}{s^3 + 2s^2 - s + 2} \).
 (d) Find two different state-space realizations for the discrete time system \(\hat{g}(z) = \frac{z^{-1}}{z^{-2} + 2z^{-1} - 3} \).
4. 6 pts. Consider the mechanical system described by Figure 1. Define the states $x_1 = \phi$, $x_2 = \dot{\phi}$, $x_3 = D$, and $x_4 = \dot{D}$. Analysis of Figure 1 (and application of some reasonable approximations) reveals that

$$
\dot{x}_1(t) = x_2(t) \\
\dot{x}_2(t) = \frac{g}{L} \sin x_1(t) - \frac{1}{LM} (-fx_4 + u(t)) \cos x_1(t) \\
\dot{x}_3(t) = x_4(t) \\
\dot{x}_4(t) = -\frac{f}{M}x_4(t) + \frac{1}{M}u(t)
$$

Suppose also that the output of this system is $y(t) = \tan x_1$.

(a) Observe that $x_1(t) = x_2(t) = x_3(t) = x_4(t) = u(t) = 0$ is a solution to this set of differential equations. Linearize this system around this solution and find A, B, C, D such that $\dot{x}(t) = Ax(t) + Bu(t)$ and $y(t) = Cx(t) + Du(t)$.

(b) Observe that $x_1(t) = \pi$ and $x_2(t) = x_3(t) = x_4(t) = u(t) = 0$ is another solution to this set of differential equations. Linearize this system around this solution and find A, B, C, D such that $\dot{x}(t) = Ax(t) + Bu(t)$ and $y(t) = Cx(t) + Du(t)$.

5. 3 pts. For each of the following, find a solution for x. If a solution does not exist then show why. If the solution is not unique then mathematically describe the set of all possible solutions. Justify your answers.

(a)

$$
\begin{bmatrix}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 10 \\
4 & 7 & 13
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
1 \\
3
\end{bmatrix}
$$

(b)

$$
\begin{bmatrix}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 10 \\
4 & 7 & 13
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix} =
\begin{bmatrix}
1 \\
1 \\
1 \\
3
\end{bmatrix}
$$

(c)

$$
\begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 7 \\
3 & 6 & 10 & 13
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$
6. 3 pts. Given arbitrary $P \in \mathbb{R}^{m \times n}$ and $Q \in \mathbb{R}^{n \times k}$. Show that, if the columns of PQ are linearly independent, then so are the columns of Q. Give an example to show that the converse of this statement is not true, in general. Hint: Write $Q = [q_1, \ldots, q_k]$. If the columns of Q are linearly dependent then there exists a set of k scalars $\{\alpha_i\}_{i=1}^k$ such that $\alpha_1 q_1 + \alpha_2 q_2 + \cdots + \alpha_k q_k = 0$.

7. 5 pts. Given the following discrete time, LTI, state-space system description,

$$
\begin{align*}
\mathbf{x}[k+1] &= \begin{bmatrix} 0 & 1 & 3 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{x}[k] + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u[k] \\
y[k] &= \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \mathbf{x}[k] + u[k]
\end{align*}
$$

(a) Find a different state-space realization of this system that has the same impulse response as this system.

(b) For $k \geq 0$, explicitly compute the zero-input response of the system for the following cases:

$$
\begin{align*}
\mathbf{x}(0) &= \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \\
\mathbf{x}(0) &= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \\
\mathbf{x}(0) &= \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix},
\end{align*}
$$

(c) Use your result from part (a) to derive a general expression for the zero-input response of the system when the initial state $\mathbf{x}(0) = [\gamma_1, \gamma_2, \gamma_3]^T$.