ECE531 Lecture 3a: A Mathematical Model for Hypothesis Testing
(Infinite Number of Possible Observations)

D. Richard Brown III

Worcester Polytechnic Institute

26-January-2011
Hypothesis Testing with Infinite Observation Spaces

Last week, we covered the case of observation sets with a finite number of possibilities. Lots of real-world problems have observation sets with an infinite number of possibilities. For example:

1. Communications: We transmit a binary symbol $s \in \{s_0, s_1\}$ and the signal is received in additive white Gaussian noise

$$ y = s + w $$

with $w \sim \mathcal{N}(0, \sigma^2)$. The observation $y \in \mathbb{R} = \mathcal{Y}$. The decision rule is a mapping from \mathbb{R} to $\mathcal{Z} = \{0, 1\}$.

2. Drug testing: A test provides values for the level of testosterone, red blood cell count, and creatinine. The observation $y \in \mathbb{R}^3 = \mathcal{Y}$. The decision rule is a mapping from \mathbb{R}^3 to $\mathcal{Z} = \{0, 1\}$.

In the case of finite observation spaces, we developed the concept of conditional risk vectors $R(D) = [R_0(D), \ldots, R_{N-1}(D)]^\top$ with

$$ R_j(D) = c_j^\top D p_j \text{ (finite observation spaces)} $$

We would like to extend this notion to infinite observation spaces.
Model Summary

H_0 H_1

distribution $p_x(y)$

decision rule

states observations hypotheses
Infinite Observation Sets: Part 1

We can generalize our insight from the finite observation space as follows:

1. We can no longer use a decision matrix. Our randomized decision rule is denoted as $\rho = [\rho_0, \ldots, \rho_{M-1}] : \mathcal{Y} \mapsto \mathcal{P}_M$ where \mathcal{P}_M is the set of pmfs on \mathcal{Z}. We still use \mathcal{D} to denote the set of decision rules $\rho \in \mathcal{D}$.

2. We denote $\rho_i(y)$ as the probability of deciding \mathcal{H}_i when the observation is y.

3. The cost of deciding \mathcal{H}_i when the state is x_j is still denoted as C_{ij}. Hence, when we start in state x_j and receive the observation y, the expected cost of using decision rule ρ is

$$C_j(\rho) = \sum_{i=0}^{M-1} \rho_i(y)C_{ij}$$
The conditional risk for state x_j is then

$$R_j(\rho) = \int_{y \in Y} C_j(\rho)p_j(y) \, dy = \int_{y \in Y} \left[\sum_{i=0}^{M-1} \rho_i(y)C_{ij} \right] p_j(y) \, dy$$

where $p_j(y)$ is the known conditional density that probabilistically describes the relationship between state x_j and the observations.

As before, we can group these individual conditional risks into a conditional risk vector $R(\rho) \in \mathbb{R}^N$.

Theorem

The function $R : \rho \mapsto R(\rho)$ is linear.

Proof.

Same idea as the case with finite \mathcal{Y}.

Worcester Polytechnic Institute

D. Richard Brown III

26-January-2011
If we let the decision rule ρ range over all of \mathcal{D}, $R(\rho)$ traces out the set Q of achievable conditional risk vectors in \mathbb{R}^N.

Theorem

Q is a closed and bounded convex subset of \mathbb{R}^N.

The proof of this is omitted here since it is a bit messy and requires some understanding of topology, pointwise convergence, and the dominated convergence theorem.

The main point: The concepts of **Pareto optimal decision rules** and the **optimal tradeoff surface** of Q also apply to the case of infinite \mathcal{Y}.

Note that Q is probably not a polytope anymore.
Summary of Main Results

Conditional risks as a way of quantifying the performance/consequences of a decision rule when the state is x_j:

$$ R_j(D) = c_j^\top D p_j \quad \text{(finite observation spaces)} $$

$$ R_j(\rho) = \int_{y \in \mathcal{Y}} \left[\sum_{i=0}^{M-1} \rho_i(y) C_{ij} \right] p_j(y) \, dy \quad \text{(infinite observation spaces)} $$

Remarks:

1. We can only use decision matrices in the case when \mathcal{Y} is finite.
2. The conditional risks for finite and infinite \mathcal{Y} are conceptually similar:
 - Both are an inner product of the cost-weighted decision rule and the conditional observation probabilities
 - Both yield a set of achievable CRVs that is closed, bounded, and convex
 - Convexity implies that minimizing all conditional risks simultaneously is impossible. The conditional risks must be traded off against each other on the optimal tradeoff surface.