Problem Statement

2.9 This problem illustrates what happens to an unbiased estimator when it undergoes a nonlinear transformation. In example 2.1, if we choose to estimate the unknown parameter $\theta = A^2$ by

$$\hat{\theta} = \left(\frac{1}{N} \sum_{n=0}^{N-1} x[n] \right)^2$$

can we say that the estimator is unbiased? What happens as $N \to \infty$?

Example 2.1 is about estimating a DC level A in white Gaussian noise. We know the sample mean estimator is an unbiased estimator of A. This problem is about estimating A^2, however. The question is can we just square the sample mean estimate to get an unbiased estimate of A^2?
To answer the question about bias, recall that $X[n] = A + W[n]$ with $W[n] \sim \mathcal{N}(0, \sigma^2)$ and let’s compute the mean of our estimator:

$$E_\theta(\hat{\theta}(X)) = E_\theta \left(\left(\frac{1}{N} \sum_{n=0}^{N-1} X[n] \right)^2 \right)$$

$$= \frac{1}{N^2} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} E_\theta(X[n]X[m])$$

$$= \frac{1}{N^2} \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} E_\theta((A + W[n])(A + W[m]))$$

$$= \frac{1}{N^2} \left[N(A^2 + \sigma^2) + N(N-1)A^2 \right]$$

$$= A^2 + \frac{\sigma^2}{N}$$

so this is clearly biased if $\sigma^2 > 0$ and $N < \infty$.
Remarks

Using this result, we could form an unbiased estimator

\[
\hat{\theta} = \left(\frac{1}{N} \sum_{n=0}^{N-1} x[n] \right)^2 - \frac{\sigma^2}{N}.
\]

This estimator is valid because \(\sigma^2 \) and \(N \) are known.

Finally, what happens as \(N \to \infty \)? We see from the previous result that the bias vanishes. We call such an estimator “asymptotically unbiased”. Even though it is biased for finite \(N \), the bias vanishes as \(N \to \infty \).