ECE531 Screencast 3.4: Sufficiency and Completeness

D. Richard Brown III

Worcester Polytechnic Institute
Sufficiency

Definition

$T : \mathcal{Y} \mapsto \Delta$ is a **sufficient statistic** for the family of parameterized pdfs

$\{p_Y(y ; \theta) ; \theta \in \Lambda \}$ if the distribution of the random observation

conditioned on $T(Y)$, i.e. $p_Y(y | T(Y) = t ; \theta)$, does not depend on θ for

all $\theta \in \Lambda$ and all $t \in \Delta$.

Intuitively, a sufficient statistic summarizes the information contained in

the observation about the unknown parameter. Knowing $T(y)$ is as good

as knowing the full observation y when we wish to estimate θ.
Neyman-Fisher Factorization Theorem

Theorem (Fisher 1920, Neyman 1935)

A statistic T is sufficient for θ if and only if there exist functions g_{θ} and h such that the parameterized pdf of the observation can be factored as

$$p_Y(y; \theta) = g_{\theta}(T(y))h(y)$$

for all $y \in \mathcal{Y}$ and all $\theta \in \Lambda$.

The proof of this theorem is in your textbook.

Note that $h(y)$ can’t be a function of θ and $g_{\theta}(T(y))$ must only be a function of θ and $T(y)$.
Example: Neyman-Fisher Factorization Theorem

Suppose $\theta \in \mathbb{R}$ and

$$p_Y(y; \theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp \left\{ \frac{-1}{2\sigma^2} \sum_{k=0}^{n-1} (y_k - \theta)^2 \right\}.$$

Let $T(y) = \frac{1}{n} \sum_{k=0}^{n-1} y_k$. Let's try the N-F factorization...

$$p_Y(y; \theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp \left\{ \frac{-n}{2\sigma^2} \left(\frac{1}{n} \sum_{k=0}^{n-1} y_k^2 - 2\theta y_k + \theta^2 \right) \right\}$$

$$= \frac{1}{(2\pi\sigma^2)^{n/2}} \exp \left\{ \frac{-n}{2\sigma^2} \left(\theta^2 - 2\theta T(y) \right) \right\} \exp \left\{ \frac{-1}{2\sigma^2} \sum_{k=0}^{n-1} y_k^2 \right\}$$

$\quad g_\theta(T(y)) \\
\quad h(y)$

Hence $T(y)$ is a sufficient statistic.
Completeness of a Family of PDFs

Definition

The family of pdfs \(\{p_Y(y; \theta) ; \theta \in \Lambda \} \) is said to be complete if the condition \(\mathbb{E}[f(Y)] = 0 \) for all \(\theta \) in \(\Lambda \) implies that \(\text{Prob}[f(Y) = 0] = 1 \) for all \(\theta \) in \(\Lambda \). Note that \(f : \mathcal{Y} \mapsto \mathbb{R} \) can be any function.

To get some intuition, consider the case where \(\mathcal{Y} = \{y_0, \ldots, y_{L-1}\} \) is a finite set. Then

\[
\mathbb{E}[f(Y)] = \sum_{\ell=0}^{L-1} f(y_\ell) \text{Prob}(Y = y_\ell; \theta) = f^\top(y) P(\theta)
\]

For a fixed \(\theta \) it is certainly possible to find a non-zero \(f \) such that \(\mathbb{E}[f(Y)] = 0 \). But we have to satisfy this condition for all \(\theta \in \Lambda \), i.e. we need a vector \(f(y) \) that is **orthogonal to the all members of the family** of vectors \(\{P(\theta) ; \theta \in \Lambda \} \). If the only such vector that satisfies the condition \(\mathbb{E}[f(Y)] = 0 \) for all \(\theta \in \Lambda \) is \(f(y_0) = \cdots = f(y_{L-1}) = 0 \), then the family \(\{P ; \theta \in \Lambda \} \) is complete.
Complete Sufficient Statistics

Definition

Suppose that T is a sufficient statistic for the family of pdfs $\{p_Y(y; \theta); \theta \in \Lambda\}$. Let $p_Z(z; \theta)$ denote the distribution of $Z = T(Y)$ when the parameter is θ. If the family of pdfs $\{p_Z(z; \theta); \theta \in \Lambda\}$ is complete, then T is said to be a complete sufficient statistic for the family $\{p_Y(y; \theta); \theta \in \Lambda\}$.

[Diagram of parameter space, observation space, and sufficient statistics]
Theorem

Suppose \(\mathcal{Y} = \mathbb{R}^n, \Lambda \subset \mathbb{R}, \text{ and} \)

\[
p_Y(y ; \theta) = a(\theta) \exp \{ q(\theta)T(y) \} h(y)
\]

where \(a, T, q, \text{ and } h \) **are all real-valued functions.** **Then** \(T(y) \) **is a complete sufficient statistic for the family** \(\{ p_Y(y ; \theta) ; \theta \in \Lambda \} \).

For the proof, see Poor pp. 165-166 and/or Lehmann 1986.