ECE531 Screencast 5.1: Introduction to Bayesian Estimation

D. Richard Brown III

Worcester Polytechnic Institute
Parameter Estimation Approaches

Two fundamentally different approaches to parameter estimation:

1. **Non-random (Classical)**: The parameter of interest θ is considered to be a deterministic but unknown constant. It does not possess any known prior distribution.

2. **Bayesian**: The parameter of interest θ is a realization of a random variable Θ with a known prior density $\pi(\theta)$.

Remarks:

- The performance of classical parameter estimators is usually a function of θ.
- The Bayesian estimator gives the best possible estimate “on the average”, where the risk/cost is averaged over the joint pdf $p_{Y,\Theta}(y, \theta)$. Performance is not a function of θ.
- If you have prior knowledge, you should use it. Prior knowledge will lead to a more accurate estimator.
Cost Assignments and Conditional Risk

Cost assignment: \(C_\theta(\hat{\theta}) : \Lambda \times \Lambda \mapsto \mathbb{R} \) is the cost of the parameter estimate \(\hat{\theta} \in \Lambda \) given the true parameter \(\theta \in \Lambda \). Let \(\epsilon := \hat{\theta}(y) - \theta \). Many cost assignments can be written as \(C_\theta(\hat{\theta}) = C(\epsilon) \). Recall:

- Squared error: \(C_\theta(\hat{\theta}) = \epsilon^2 \).
- Absolute error: \(C_\theta(\hat{\theta}) = |\epsilon| \).
- Uniform error ("hit or miss"):

\[
C_\theta(\hat{\theta}) = \begin{cases}
0 & |\epsilon| \leq \frac{\Delta}{2} \\
1 & \text{otherwise}
\end{cases}
\]

Conditional risk of estimator \(\hat{\theta}(y) \) when the true parameter is \(\theta \):

\[
R_\theta(\hat{\theta}) := \mathbb{E} \left[C_\theta(\hat{\theta}(Y)) \mid \Theta = \theta \right] = \int_\mathcal{Y} C_\theta(\hat{\theta}(y)) p_{Y \mid \Theta}(y \mid \Theta = \theta) \, dy
\]
The Bayesian Philosophy

We assume that the unknown parameter(s) are random with a known prior distribution $\Theta \sim \pi(\theta)$. The average/Bayes risk of estimator $\hat{\theta}(y)$ is then

$$
r(\hat{\theta}) = E[R_{\Theta}(\hat{\theta})] = \int_{\Lambda} R_{\theta}(\hat{\theta})\pi(\theta) d\theta$$

$$= \int_{\Lambda} \int_{Y} C_{\theta}(\hat{\theta}(y))p_{\theta}(y)\pi(\theta) dy d\theta$$

$$= \int_{Y} \int_{\Lambda} C_{\theta}(\hat{\theta}(y))p_{\theta}(y)\pi(\theta) d\theta dy$$

where $p_{\theta}(y)$ is shorthand notation for the conditional distribution

$p_{Y|\Theta}(y|\Theta = \theta)$.

The goal here is to find an estimator $\hat{\theta}(y)$ that minimizes the Bayes risk.
Let’s use Bayes’ rule to rewrite our conditional density

\[p_\theta(y) := p_{Y \mid \Theta}(y \mid \Theta = \theta) = \frac{p_{Y, \Theta}(y, \theta)}{p_\Theta(\theta)} = \frac{p_{\Theta \mid Y}(\theta \mid Y = y)p_Y(y)}{p_\Theta(\theta)} = \frac{\pi_y(\theta)p(y)}{\pi(\theta)} \]

Hence, the Bayes risk can be written as

\[r(\hat{\theta}) = \int_Y \int_\Lambda C_\theta(\hat{\theta}(y))p_\theta(y)p(\theta)\pi(\theta) \, d\theta \, dy \]

\[= \int_Y \underbrace{\int_\Lambda C_\theta(\hat{\theta}(y))\pi_y(\theta) \, d\theta}_{\text{posterior cost of estimator } \hat{\theta}(y) \text{ when } Y=y} \, p(y) \, dy \]

For purposes of estimation, we can think of \(y \) as fixed. The Bayes estimate of the true parameter \(\theta \) can be found by specifying an estimator (a function of \(y \)) that minimizes this posterior cost for each \(y \in Y \).
Minimizing the Bayes Risk

We want to minimize

\[r(\hat{\theta}) = \int_{\mathcal{Y}} \int_{\Lambda} C_{\theta}(\hat{\theta}(y)) \pi_y(\theta) d\theta \quad p(y) dy. \]

posterior cost of estimator \(\hat{\theta}(y) \) when \(Y = y \)

To do this, we can fix \(y \) and solve the minimization problem

\[\hat{\theta}_{\text{opt}}(y) = \arg \min_{g(\cdot)} \int_{\Lambda} C_{\theta}(g(y)) \pi_y(\theta) d\theta \]

\[= \arg \min_{g(\cdot)} \mathbb{E}[C_{\Theta}(g(y)) \mid Y = y] \]

for each \(y \in \mathcal{Y} \). The solution, of course, depends on our choice of \(C_{\theta}(\cdot) \).