
D. Richard Brown III	

Associate Professor	

Worcester Polytechnic Institute	

Electrical and Computer Engineering Department	

drb@ece.wpi.edu	

October 19-20, 2009	

Day 1 handouts	

Workshop Goals	

  Correctly install Texas Instruments Code Composer Studio IDE

and DSK drivers	

  Become familiar with	

  DSP basics	

  TMS320C6713 floating point DSP architecture	

  TMS320C6713 DSP starter kit (DSK)	

  Code composer studio integrated development environment (IDE)	

  Matlab design and analysis tools	

  Learn how to program the C6713	

  Writing and compiling code	

  Fixing errors	

  Downloading code to the target and executing	

  Debugging	

  Write and run useful programs on the C6713 DSK	

  Learn about DSP applications	

  Learn where to find help	

Page 2 of 68

Take Home Items	

  “Digital Signal Processing and Applications with the
C6713 and C6416 DSK” by Chassaing & Reay, 2008	

  Texas Instruments TMS320C6713 DSK including	

  DSK board with TMS320C6713 DSP chip	

  USB cable	

  Power supply	

  CD with Code composer studio IDE (v3.1) and

electronic documentation	

  DSK technical reference manual	

  DSK quick start installation guide	

  Matlab/Simulink trial CD and other promotional

material	

Page 3 of 68

C6713 DSK Overview	

  225 MHz TMS320C6713 floating point DSP	

  AIC23 stereo codec (ADC and DAC)	

  Ideal for audio applications	

  8-96 kHz sample rates	

  Memory	

  16 MB dynamic RAM	

  512 kB nonvolatile FLASH memory	

  General purpose I/O	

  4 LEDs	

  4 DIP switches	

  USB interface to PC	

Page 4 of 68

C6713 DSK Functional Block Diagram	

Page 5 of 68

C6713 DSK Physical Layout	

Page 6 of 68

Is my DSK working?���
DSK Power On Self Test	

  Power up DSK and watch LEDs	

  Power On Self Test (POST) program stored in FLASH

memory automatically executes	

  POST takes 10-15 seconds to complete	

  All DSK subsystems are automatically tested	

  During POST, a 1kHz sinusoid is output from the AIC23

codec for 1 second	

  Listen with headphones or watch on oscilloscope	

  If POST is successful, all four LEDs blink 3 times and
then remain on	

Page 7 of 68

Is my DSK working? DSK Diagnostic Utility	

  Install CCS 3.1	

  Directions in “Quick Start Installation Guide”	

  More detailed directions available on spinlab web site	

  Diagnostic utility automatically installed	

Page 8 of 68

press���
start	

ok!

Code Composer Studio IDE	

  Connect power supply to DSK	

  Wait for POST to complete	

  Connect USB cable from PC to DSK	

  If this is the first time connecting the DSK, you may be

asked to install a driver. The driver is on the Code
Composer Studio CD and will automatically be found by
Windows if the CD is in the drive.	

  Launch Code Composer Studio C6713 DSK	

  CCS will load and wait for your input	

Page 9 of 68

Code Composer Studio IDE	

Page 10 of 68

CCS Integrated Development
Environment	

Page 11 of 68

Useful TI documentation (available online or on your hard drive):	

SPRU509F.PDF CCS v3.1 IDE Getting Started Guide	

C6713DSK.HLP C6713 DSK specific help material	

Note that your DSK includes CCS v3.1.	

Connecting to the C6713 DSK	

Page 12 of 68

Opening an Existing Project	

Page 13 of 68

Project->Open	

Select a .PJT file and press “Open”. Chassaing example
projects should be in c:\CCStudio_v3.1\myprojects\	

Other example projects for the C6713 can be found in	

c:\CCStudio_v3.1\examples\dsk6713	

Compiling/Building a Project	

Project->Build (F7) 	

Page 14 of 68

Loading and Running a Project on the
C6713 DSK	

File-> Load Program (ctrl+L)	

Select the .out file in the project\Debug directory. Program is sent to DSK.	

Debug->Run (F5 or the Run button)	

Page 15 of 68

Halting a Running Program on the
C6713 DSK	

Debug->Halt (shift+F5 or the Halt button).	

Page 16 of 68

Tip: Fixing the search path	

Add C:\CCStudio_v3.1\C6000\dsk6713\include to the search path	

Page 17 of 68

Project -> 	

Build Options ->	

[Compiler tab] ->	

[Preprocessor category]	

Tip: Problems Finding Files During Linking	

Problem is caused by a bad path for the include
libraries in the linker options (Project -> Build
Options -> Linker tab)	

A fix for this is to remove rts6700.lib,
DSK6713bsl.lib, and csl6713.lib from the linker
options and add these files manually (Project ->
Add files to Project…)	

C:\CCStudio_v3.1\c6000\cgtools\lib\rts6700.lib 	

C:\CCStudio_v3.1\c6000\csl\lib\csl6713.lib	

C:\CCStudio_v3.1\c6000\dsk6713\lib\dsk6713bsl.lib	

Or you can add the appropriate directories to the
library search path.	

Page 18 of 68

remove

Tip: Fixing the memory model	

Change the memory model to “data=far” 	

Page 19 of 68

Project -> 	

Build Options ->	

[Compiler tab] ->	

[Advanced category]	

Optional: Suppress Linker Warnings	

Project->Build Options 	

[linker tab]	

In the Advanced category,
uncheck “warn about output
sections”.	

Alternatively, put values for
stack and heap in the Basic
category.	

Page 20 of 68

Things to Try	

  Open the Sin8_LED project and fix the search path and
the memory model (see previous pages). Then build,
load, and run it.	

  Press DIP switch 0. You should see LED 0 light up and a 1kHz

sinusoid should appear on the left channel of the codec. This is
a good test to see if the DSK is working.	

  Make an error in the source code Sin8_LED.c and build
the project to see what happens.	

  Change the amplitude of the sinusoid (gain variable),
rebuild, reload, and see what happens.	

  Modify the code to generate a 500Hz sinusoid.	

  Open, build, and load other projects in “myprojects”	

Page 21 of 68

Creating a New Project (1 of 5) 	

1.  Create new project ���
Project->New	

Page 22 of 68

Creating a New Project (2 of 5)	

2.  Write your C code: ���
File->New->Source File 	

3.  Save it in your project directory (make
sure it has a .c extension): ���
File->Save 	

4.  Add your C code to the project: ���
Project->Add Files to Project	

Page 23 of 68

Creating a New Project (3 of 5)	

5.  Add required support files to project���
Project->Add Files to Project	

a)  myprojects\support\c6713dsk.cmd ���
[linker command file – this or another cmd file is required]	

b)  c6000\cgtools\lib\rts6700.lib ���
[run-time support library functions - required] 	

6.  Add optional support files to project, e.g. ���
Project->Add Files to Project	

a)  myprojects\support\vectors_poll.asm or vectors_intr.asm ���
[used to set up interrupt vectors] 	

b)  c6000\dsk6713\lib\dsk6713bsl.lib ���
[DSK board support library functions – useful for interfacing
to the codec, DIP switches, and LEDs] 	

c)  c6000\csl\lib\csl6713.lib ���
[chip support library functions] 	

Page 24 of 68

Creating a New Project (4 of 5) 	

7.  Set up the build options for
C6713: ���
Project -> Build Options
(compiler tab)	

o  Make sure target version is
C671x	

o  Also make sure Opt(imization)
Level is “none” - this will help
with debugging	

Page 25 of 68

Creating a New Project (5 of 5)	

8.  Scan all file dependencies to automatically bring
all header files and includes into the project: ���
Project -> Scan all file dependencies 	

9.  Build the project: ���
Project -> Build 	

10.  If successful, load the .out file to the DSK: ���
File -> Load Program���
Select the Debug directory. Select the .out file. 	

11.  Run it: ���
Debug -> Run or F5 or the run button.	

Page 26 of 68

A Simple Program to Try: “helloworld”	

Page 27 of 68

// helloworld.c
// D. Richard Brown III
// 19-Oct-2009

#include <stdio.h>

void main()
{

 printf("Hello world.\n");

}

More Interesting Programs: ���
Interfacing With the Real World	

Page 28 of 68

analog	

input	

ADC	
 DSP	
 DAC	
 analog	

output	

data	
 code	

TMS320C6713 DSK:	

digital inputs = 4 DIP switches	

digital outputs = 4 LEDs	

ADC and DAC = AIC23 codec	

digital	

inputs	

digital	

outputs	

Interfacing With the DIP Switches and LEDs	

LED and DIP switch interface functions are provided in dsk6713bsl.lib.	

 Initialize DIP/LEDs with���
	
DSK6713_DIP_init() and/or DSK6713_LED_init()	

 Read state of DIP switches with���
	
DSK6713_DIP_get(n) 	

 Change state of LEDs with���
	
DSK6713_LED_on(n) or���
	
DSK6713_LED_off(n) or���
	
DSK6713_LED_toggle(n) 	

where n=0, 1, 2, or 3.	

Documentation is available in C:\CCStudio_v3.1\docs\hlp\c6713dsk.hlp	

Page 29 of 68

Interfacing With the AIC23 codec: C6x
Interrupt Basics	

  Interrupt sources must be mapped to interrupt events	

  16 “interrupt sources” (timers, serial ports, …)	

  12 “interrupt events” (INT4 to INT15)	

  Interrupt events have associated “interrupt vectors”. An
“interrupt vector” is a special pointer to the start of
the “interrupt service routine” (ISR).	

  Interrupt vectors must be set up in your code (usually
in the file “vectors.asm”).	

  You are also responsible for writing the ISR.	

Page 30 of 68

Setting Up an Interface With the AIC23
Codec (step 1 of 3)	

Page 31 of 68

We can write the ISR first:	

Remarks:	

•  MCBSP_read() requests samples from the codec’s ADC	

•  MCBSP_write() sends samples to the codec’s DAC	

•  This ISR simply reads in samples and then sends them back out.	

Codec Data Format and How To Separate
the Left/Right Channels	

Page 32 of 68

// we can use the union construct in C to have !
// the same memory referenced by two different variables!
union {Uint32 combo; short channel[2];} temp;!

// the McBSP functions require that we !
// read/write data to/from the Uint32 variable!
temp.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);!
MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp.combo);!

// but if we want to access the left/right channels individually!
// we can do this through the short variables!
Leftchannel = temp.channel[1];!
Rightchannel = temp.channel[0];!

temp.channel[0] (short) temp.channel[1] (short) temp.combo (Uint32)

Setting Up an Interface With the AIC23
Codec (step 2 of 3)	

Page 33 of 68

•  Now we can set up the interrupt vector to point to the ISR.	

•  In this example, our ISR is called “serialPortRcvISR”.	

•  We will link the codec interrupt event to INT15. 	

•  Here is the appropriate code in the vectors.asm file:	

Setting Up an Interface With the AIC23
Codec (step 3 of 3)	

Initialization steps:	

1.  Initialize the DSK	

2.  Open the codec with

the default
configuration.	

3.  Configure multi-
channel buffered serial
port (McBSP)	

4.  Configure codec
parameters, e.g. set
the sampling rate	

5.  Configure and enable
interrupts	

6.  Do normal processing
(we just enter a loop
here)	

Page 34 of 68

Setting the Sampling Rate	

Here we open the codec with the default configuration:	

The structure “config” is declared in dsk6713_aic23.h	

Rather than editing the header file, we can change the sampling frequency after
the initial configuration:	

Frequency definitions are in dsk6713_aic.h	

Page 35 of 68

Other Codec Configuration	

  Line-level input volume (individually controllable for left
and right channels)	

  Headphone output volume (individually controllable for
left and right channels)	

  Digital word size (16, 20, 24, or 32 bit)	

  Other settings, e.g. byte order, etc. For more details,
see:	

  dsk6713_aic23.h	

  Codec datasheet (TLV320AIC23B)	

  C:\CCStudio_v3.1\docs\hlp\c6713dsk.hlp	

Page 36 of 68

Some Things to Try	

  Make a new project that:	

  Polls DIP switch 0. If pressed, light up all four LEDs.	

  Sets the sampling rate of the AIC23 codec to 44.1kHz.	

  Uses an ISR to sample the left and right channels.	

  Multiplies the left and right channels by a variable gain.	

  Outputs the modified samples to the left and right channels.	

  Bonus: Swap the channels, i.e. Left_in -> Right_out,
Right_in -> Left_out, when DIP switch 0 is pressed.	

  Bonus: Try changing the input/output volumes (hint: look
at default configuration in dsk6713_aic23.h)	

Page 37 of 68

Lunch Break	

Page 38 of 68

Workshop resumes at 1:30pm…

Debugging and Other Useful Features
of the CCS IDE	

  Breakpoints	

  Probe points	

 Watch variables	

  Plotting arrays of data	

 Animation	

 General Extension Language (GEL)	

Page 39 of 68

Breakpoints and Probe Points	

  Breakpoints: stop code execution at this point to allow state
examination and step-by-step execution.	

  Probe points: force window updates and/or read/write samples
from/to a file at a specific point in your code.	

Page 40 of 68

break point

probe point

toggle
break point

toggle
probe point

clear all
break points

clear all
probe points

Breakpoints	

Page 41 of 68

source step into
source step over

step out
ASM step into

ASM step over

run to cursor
set progam counter to cursor

“Run to Cursor” is a handy	

shortcut instead of setting	

a breakpoint	

Watch Variables	

Page 42 of 68

Watch Variables	

  In the Watch Locals tab, the debugger
automatically displays the Name, Value, and Type
of the variables that are local to the currently
executing function.	

  In the Watch tab, the debugger displays the
Name, Value, and Type of the local and global
variables and expressions that you specify.	

 Can add/delete tabs.	

Page 43 of 68

Plotting Arrays of Data	

Page 44 of 68

Graph Windows: Plotting Arrays of Data	

Page 45 of 68

right click

Probe Points	

  Differ from breakpoints: Halt the DSP momentarily,

perform an action, and then automatically resume
execution.	

  Some useful functions of probe points:	

  Connect probe point to graph window.	

  Connect probe point to file I/O to facilitate repeatable testing.	

 Note that probe points cause problems with real-time

operation.	

  For more details, see CCS Getting Started Guide
(SPRU509F.PDF) or CCS help.	

Page 46 of 68

Using a Probe Point for File I/O	

  Basic idea:	

  Create an input data file with the signals you

want to use to test your code.	

  Place a probe point in your code to read the
contents of datafile into an array in the DSK
memory.	

  Place another probe point in your code to
write the results (stored in an array on the
DSK) to a datafile on the computer. 	

Page 47 of 68

Example Matlab code to generate
input data (noisy sinusoid)	

Page 48 of 68

Setting Probe Points in CCS	

Page 49 of 68

Connecting Probe Points to File I/O	

  File -> File I/O	

Page 50 of 68

See SPRU509 for more details.

Using a Probe Point to Update a Graph Window	

Page 51 of 68

  First create a graph using View->Graph	

  Then go to Debug->Probe Points to connect a probe point
to the graph	

Animation	

  Runs the program until a breakpoint is encountered 	

  At the breakpoint, execution stops and all windows not

connected to any Probe Points are updated. 	

  Program execution then automatically resumes	

  Useful for updating graphical displays	

  Note: Animation will cause problems with real-
time operation	

  Can pause execution at each breakpoint: ���
Option->Customize: Debug Properties tab ���
Animate Speed (0-9s) (zero = no pause)	

Page 52 of 68

General Extension Language	

  Create functions to extend the functionality of
Code Composer Studio	

  GEL files are not loaded with a project	

  Often used to change variables “on-the-fly”	

  Examples from Chassaing textbook: ���
sin2sliders.pjt and sin2sliders.gel	

Page 53 of 68

General Extension Language	

  Useful GEL files can be pretty simple	

  From sin2sliders.gel:	

  Syntax details can be found in CCS help: ���
Help->Contents->Making a Code Composer Studio Project ->
Building and Running your Project -> Automating Tasks with
General Extension Language (GEL)	

Page 54 of 68

Some Things to Try	

  Try out the debugging tools on the code you wrote in the

morning session	

  breakpoints	

  watch variables	

  step into, step over, step out	

  Try out the CCS plotting tools	

  Modify your code to have a buffer (i.e., store samples in an array)

and plot the contents in a graph window	

  Try out file I/O with probe points and/or updating a graph

with probe points	

  Try to have CCS animate a plot window via probe points

and/or animation	

  Modify your stereo in/out project to have the output gain

changeable via a GEL slider	

Page 55 of 68

Finite Impulse Response ���
(FIR) Filters	

  Frequently used in real-time DSP systems	

  Simple to implement	

  Guaranteed to be stable	

  Can have nice properties, e.g. linear phase	

  Input/output relationship	

x = input, y = output, h = filter coefficients, M = # of filter
coefficients	

Page 56 of 68

Creating FIR Filters	

1.  Design filter	

  Type: low pass, high pass, band pass, band stop, ...	

  Filter order M	

  Desired frequency response	

2.  Decide on a realization structure 	

3.  Decide how coefficients will be quantized.	

4.  Compute quantized coefficients	

5.  Decide how everything else will be quantized (input

samples, output samples, result of multiplies, result of
additions)	

6.  Write code to realize filter	

7.  Test filter and compare to theoretical expectations	

Page 57 of 68

Matlab

CCS

Designing FIR Filters	

Page 58 of 68

>> fdatool	

Filter Realization Structures	

  Lots of different structures available	

  Direct form I, direct form II, transposed forms, cascade, parallel, lattice, …	

  All have same input/output relationship	

  Choice of structure affects computational complexity and how quantization errors

are manifested through the filter	

Page 59 of 68

right click	

in this pane	

Focus on “Direct form” for now. 	

We’ll discuss other options when 	

we look at IIR filtering tomorrow.	

Compute FIR Filter Coefficients	

Page 60 of 68

set up filter and press	

Make Coefficient File For CCS	

Page 61 of 68

Here you can change the coefficient data type
to match your desired quantization.	

Example DP-FP Coefficient File	

Page 62 of 68

/*
 * Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool
 *
 * Generated by MATLAB(R) 7.0 and the
 *
 * Generated on: 19-Aug-2005 13:04:09
 *
 */

/*
 * Discrete-Time FIR Filter (real)
 * -------------------------------
 * Filter Structure : Direct-Form FIR
 * Filter Order : 8
 * Stable : Yes
 * Linear Phase : Yes (Type 1)
 */

/* General type conversion for MATLAB generated C-code */
#include "tmwtypes.h"
/*
 * Expected path to tmwtypes.h
 * C:\MATLAB7\extern\include\tmwtypes.h
 */
const int BL = 9;
const real64_T B[9] = {
 0.02588139692752, 0.08678803067191, 0.1518399865268, 0.2017873498839,
 0.2205226777929, 0.2017873498839, 0.1518399865268, 0.08678803067191,
 0.02588139692752
};

You can edit these variable names to agree with your code.	

Include this header file in your project 	

(otherwise you may get unknown datatype errors).	

Quantization Considerations	

  Key choice: floating point vs. fixed point	

  Advantages of floating point math:	

  Less quantization error	

  Don’t have to worry about scaling factors	

  Less likelihood of overflow/underflow	

  Much easier to code	

  Disadvantages of floating point math:	

  Requires floating point DSP (higher cost, higher power)	

  Executes slower than fixed point	

  C code allows you to “cast” variables into any datatype	

Page 63 of 68

Write Code to Realize FIR Filter	

 Direct form I implies direct realization of
the convolution equation	

  Some considerations:	

 Allocate buffer of length M for input samples.	

 Move input buffer pointer as new data comes in

or move data? 	

Page 64 of 68

FIR Filter Example Code	

Page 65 of 68

interrupt void serialPortRcvISR()
{

 union {Uint32 combo; short channel[2];} temp;
 int i = 0;
 float result = 0.0;

 temp.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);

 // Update array samples (move data - this is the slow way)
 for(i = N-1; i >= 1; i--)
 samples[i] = samples[i-1];
 samples[0] = (float)temp.channel[0]; // store right channel

 // Filtering
 for(i = 0 ; i < N ; i++)
 result += fir_coeff[i]*samples[i];
 temp.channel[0] = (short)result; // output to right channel
 MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp.combo);

}
Note that all math here is floating point. 	

Filter coefficients are also assumed to be floating point.	

Some Things to Try	

  Try creating an FIR filter with the following specs:	

  Bandpass	

  8th order Direct Form I	

  Least-squares design	

  44100Hz sampling rate	

  Fstop1 = 3000Hz	

  Fpass1 = 4000Hz	

  Fpass2 = 8000Hz	

  Fstop2 = 12000Hz	

  Equal weighting in all bands	

  All floating point math (single or double precision)	

  Use an oscilloscope and a function generator to compare the
magnitude response of your filter to the theoretical prediction.	

Page 66 of 68

Workshop Day 1 Summary	

What you learned today:	

  Basics of the TMS320C6713 DSK and Code Composer Studio	

  How to test the DSK	

  How to open, build, load, and run existing projects	

  How to create, build, load, and run new projects	

  How to interface with DSK I/O (LEDs, DIP switches, and the AIC23

codec)	

  How to debug code in CCS including	

○  Setting and clearing breakpoints and probe points	

○  Setting up watch variables	

○  Plotting arrays of data	

○  Animation	

  How to use, modify, and create GEL files in CCS.	

  How to use Matlab’s filter design/analysis tool “fdatool”	

  How to implement an FIR filter on the C6713	

Page 67 of 68

Workshop Day 1 Reference Material	

  Chassaing and Reay textbook Chapters 1-2, and 4	

  CCS Help system	

  SPRU509F.PDF CCS v3.1 IDE Getting Started Guide	

  C6713DSK.HLP C6713 DSK specific help material	

  AIC23 Codec datasheet	

  DSK Quick Start Guide (included in your DSK box)	

  Spectrum Digital TMS320C6713 DSK reference (included in your

DSK box)	

  TMS320C6000 Programmer’s Guide (SPRU198G.PDF)	

  Matlab fdatool help (>> doc fdatool)	

  Detailed CCS IDE and DSK drivers install guide at���

http://spinlab.wpi.edu/teaching.html	

Page 68 of 68

Latest TI documentation available at ���
http://www.ti.com/sc/docs/psheets/man_dsp.htm	

