
D. Richard Brown III	

Associate Professor	

Worcester Polytechnic Institute	

Electrical and Computer Engineering Department	

drb@ece.wpi.edu	

October 19-20, 2009	

1	

Day 2 handouts	

Matlab’s Link for Code Composer Studio���
(Now Called Matlab’s Embedded IDE Link)	

  Yesterday we used Matlab to design an FIR filter.	

  The “Link for Code Composer Studio” (now called
Matlab’s Embedded IDE Link) toolbox allows even
more direct Matlab-CCS integration.	

Page 2 of 57	

Matlab’s Link for CCS: ���
Compatibility Considerations	

  To use Matlab’s link for CCS, the Matlab and CCS versions must
be compatible:	

  Code Composer Studio is now available in version 4.0.	

  Upgrade information for CCS v3.3 can be found here: ���

http://focus.ti.com/docs/toolsw/folders/print/ccstudio.html	

Page 3 of 57	

Matlab Version	

 Compatible CCS version	

R2007a	

 v3.1	

R2007b-present	

 v3.3	

Matlab’s Link for CCS: Basics (R2007a / CCS v3.1)	

% make sure DSK is connected to the computer via USB	
% and is on before proceeding	

% display a list of available DSP boards and processors	
ccsboardinfo	

% create Matlab/CCS link for board=0, processor=0 		
cc = ccsdsp(‘boardnum’,0,’procnum’,0);	

% get information about the status and capabilities of the link	
display(cc)	
info(cc)	
isrunning(cc)	
isrtdxcapable(cc)	
getproc(cc)	

% make CCS visible	
visible(cc,1)	

Page 4 of 57	

Opening, building, loading, and running a project	

% open existing project	
cd(cc,’c:\myproject\helloworld’);	
open(cc,’helloworld.pjt’);	

% build the project (returns a value of 1 if successful)	
build(cc,’all’)	

% load the binary file to the DSK	
load(cc,’Debug\helloworld.out’)	

% run the code on the DSK and check to see if it is running	
restart(cc)	
run(cc)	
isrunning(cc)	

% halt execution on the DSK and check to see if it stopped	
halt(cc)	
isrunning(cc)	

Page 5 of 57	

Reading/Writing DSK Variables	

% Important: Do not attempt to read/write data from/to the DSK while it is running. 	
% Insert one or more breakpoints in the code, run to the breakpoint,	
% perform the read, then resume execution	

% confirm the DSK is not running	
isrunning(cc)	

% create an object for the DSK variables temp and foo (can be global or local)	
tempobj = createobj(cc,’temp’);	
fooobj = createobj(cc,’foo’);	

% read/write examples	
x = read(tempobj)	 	 	% DSK temp -> Matlab x	
write(tempobj,1234) 	 	% 1234 -> DSK temp	
y = read(cc,fooobj) 	 	% DSK foo -> Matlab y (whole array)	
z = read(cc,fooobj,10) 	 	% DSK foo -> Matlab y (10th element)	
write(fooobj,4,999) 	 	% 999 -> DSK foo (4th element)	

	 	 	 	 		

Page 6 of 57	

Uint32 temp;	

short foo[100];	

(variables declared in CCS)	

Useful things that you can do with Matlab’s
Link for CCS	

1.  Rapid filter design: Halt execution on the DSK (halt),
write new filter coefficients (write), resume
execution (restart/run), and test your filter without
rebuilding the project.	

2.  Use specific test signals: Generate a specific test
signal in Matlab, overwrite the codec samples (write)
with your test signal samples, run the processing
code on the DSK, observe the output.	

3.  Rapid data analysis/graphing: Read the contents of
the a filter output (read) to Matlab, analyze the
spectrum or other properties, generate plots.	

Page 7 of 57	

Tip: Making Interesting Test Signals in Matlab	

Example: In-Phase and Quadrature Sinusoids	

>> fs=44100; 	

 	

% set up sampling frequency	

>> t=0:1/fs:5; 	

 	

% time vector (5 seconds long)	

>> x=[sin(2*pi*1000*t’) cos(2*pi*1000*t’)]; % left = sin, right = cos	

>> soundsc(x,fs);	

 	

% play sound through sound card	

Another example: white noise (in stereo)	

>> L=length(t);	

>> x=[randn(L,1) randn(L,1)];	

>> soundsc(x,fs);	

 	

% play sound through sound card	

These signals are all generated as double precision floats but can be cast to fixed
point or integer formats if necessary.	

You can save your signals to .wav files with Matlab’s wavwrite function. These .wav
files can be burned to CD and played with conventional stereo equipment.	

Page 8 of 57	

Profiling Your Code and Making it More
Efficient	

 How to estimate the execution time
of your code.	

 How to use the optimizing compiler to
produce more efficient code.	

 How data types and memory usage
affect the efficiency of your code.	

Page 9 of 57	

How to estimate code execution time
when connected to the DSK	

1.  Start CCS with the C6713 DSK connected	

2.  Debug -> Connect (or alt+C)	

3.  Open project, build it, and load .out file to the DSK	

4.  Open the source file you wish to profile	

5.  Set two breakpoints for the start/end of the code range you wish to profile	

6.  Profile -> Clock -> Enable	

7.  Profile -> Clock -> View	

8.  Run to the first breakpoint	

9.  Reset the clock	

10.  Run to the second breakpoint	

11.  Clock will show raw number of execution cycles between breakpoints.	

Page 10 of 57	

Tip: You can save your breakpoints, probe points, graphs, and watch windows with	

File -> Workspace -> Save Workspace As	

Another method for estimating code
execution time (part 1 of 3)	

Repeat steps 1-4 previous method.	

5.  Clear any breakpoints in your

code	

6.  Profile -> Setup	

7.  Click on Custom tab	

8.  Select “Cycles”	

9.  Click on clock (enable profiling)	

Page 11 of 57	

Another method for estimating code
execution time (part 2 of 3)	

10.  Select Ranges tab	

11.  Highlight code you want to profile

and drag into ranges window (hint:
you can drag whole functions into
this window)	

12.  Repeat for other ranges if desired	

Page 12 of 57	

Another method for estimating code
execution time (part 3 of 3)	

13.  Profile -> Viewer	

14.  Run (let it run for a minute or more)	

15.  Halt	

16.  Observe profiling results in Profile Viewer window	

Page 13 of 57	

Hint: edit the columns to see averages	

What does it mean?	

 Access count is the number of times that CCS
profiled the function	

 Note that the function was probably called more

than 49 times. CCS only timed it 49 times.	

  Inclusive average is the average number of
cycles needed to run the function including any
calls to subroutines	

  Exclusive average is the average number of
cycles needed to run the function excluding any
calls to subroutines	

Page 14 of 57	

Optimizing Compiler	

Page 15 of 57	

Profiling results after compiler optimization	

  In this example, we get a 3x-4x improvement with
“Speed Most Critical” and “File (-o3)” optimization	

  Optimization gains can be much larger, e.g. 20x	

Page 16 of 57	

Limitations of hardware profiling	

  Breakpoint/clock profiling method may not work with
compiler-optimized code	

  Profile -> View method is known to be somewhat
inaccurate when connected to real hardware (see
“profiling limitations” in CCS help)	

  Accuracy is better when only one or two ranges are

profiled	

  Best accuracy is achieved by running a simulator	

Page 17 of 57	

Running CCS with a Cycle-Accurate Simulator	

Page 18 of 57	

Limitations include not being able to use any DSK functionality (AIC23 codec, etc.)

Other factors affecting code efficiency	

  Memory	

  C6713 has 256kB internal SRAM	

  Up to 64kB of this SRAM can be configured as shared L2 cache	

  DSK provides additional 16MB external RAM (SDRAM)	

  Code location (.text in linker command file)	

○  internal SRAM memory (fast)	

○  external SDRAM memory (typically 2-4x slower, depends on cache

configuration)	

  Data location (.data in linker command file)	

○  internal SRAM memory (fast)	

○  external SDRAM memory (slower, depends on datatypes and cache

configuration)	

  Data types	

  Slowest execution is double-precision floating point	

  Fastest execution is fixed point, e.g. short	

Page 19 of 57	

TMS320C6713 DSK Memory Map	

Page 20 of 57	

Linker Command File Example	

Page 21 of 57	

MEMORY
{
 vecs: o = 00000000h l = 00000200h
 IRAM: o = 00000200h l = 0002FE00h
 CE0: o = 80000000h l = 01000000h
}

SECTIONS
{
 .vectors > vecs
 .cinit > IRAM
 .text > IRAM
 .stack > IRAM
 .bss > IRAM
 .const > IRAM
 .data > IRAM
 .far > IRAM
 .switch > IRAM
 .sysmem > IRAM
 .tables > IRAM
 .cio > IRAM
}

Addresses 00000000-0002FFFF correspond to the lowest
192kB of internal memory (SRAM) and are labeled “IRAM”.	

External memory is mapped to address range 80000000 –
80FFFFFF. This is 16MB and is labeled “CEO”.	

Both code and data are placed in the C6713 internal SRAM in
this example. Interrupt vectors are also in SRAM.	

Code goes here	

Data goes here	

Page 22 of 57	

Some Things to Try	

  Try profiling parts of your FIR filter code from Day 1 without

optimization. Try both profiling methods.	

  Rebuild your project under various optimization levels and try various

settings from “size most critical” to “speed most critical”.	

  Compare profile results for no optimization and various levels of

optimization.	

  Change the data types in your FIR filter code and rebuild (with and

without optimization) to see the effect on performance.	

  Try moving the data and/or program to internal/external memory and

profiling (you will need to modify the linker command file to do this)	

  Contest: Who can make the most efficient 8th order bandpass filter

(that works)?	

Page 23 of 57	

Assembly Language Programming on the
TMS320C6713	

  To achieve the best possible performance, sometimes you
have to take matters into your own hands...	

  Three options:	

1.  Linear assembly (.sa)	

○  Compromise between effort and efficiency	

○  Typically more efficient than C	

○  Assembler takes care of details like assigning “functional units”,

registers, and parallelizing instructions	

2.  ASM statement in C code (.c)	

○  asm(“assembly code”)	

3.  C-callable assembly function (.asm)	

○  Full control of assigning functional units, registers, parallelization,

and pipeline optimization	

Page 24 of 57	

C-Callable Assembly Language Functions	

  Basic concepts:	

  Arguments are passed in via registers A4, B4, A6, B6, ... in
that order. All registers are 32-bit.	

  Result returned in A4 also.	

  Return address of calling code (program counter) is in B3.

Don’t overwrite B3!	

  Naming conventions:	

○  In C code: 	

label	

○  In ASM code: 	

_label (note the leading underbar)	

  Accessing global variables in ASM:	

○  .ref _variablename	

  A function prototype must be included in your C code.	

Page 25 of 57	

Skeleton C-Callable ASM Function	

; header comments	

; passed in parameters in registers A4, B4, A6, ... in that order	

	

 	

 	

.def _myfunc 	

 	

; allow calls from external	

ACONSTANT 	

.equ 100 	

 ; declare constants	

	

 	

 	

.ref _aglobalvariable 	

; refer to a global variable	

_myfunc: NOP 	

 	

 	

 ; instructions go here	

	

 	

 	

B 	

 	

B3 	

; return (branch to addr B3)	

	

 	

 	

 	

 	

 	

; function output will be in A4	

	

 	

 	

NOP 	

 	

5 	

; pipeline flush	

	

 	

 	

.end	

Page 26 of 57	

Example C-Callable Assembly Language Program���
int fircasmfunc(short x[], short h[], int N)	

Page 27 of 57	

TMS320C67x Block Diagram	

Page 28 of 57	

One instruction is 32���
bits. Program bus is 256 bits
wide.	

 Can execute up to 8
instructions per clock cycle
(225MHz->4.4ns clock cycle).	

8 independent functional units:	

-  2 multipliers	

-  6 ALUs	

Code is efficient if all 8
functional units are always busy.	

Register files each have 16
general purpose registers, each
32-bits wide (A0-A15, B0-B15). 	

Data paths are each 64 bits
wide.	

C6713 Functional Units	

  Two data paths (A & B)	

  Data path A	

  Multiply operations (.M1)	

  Logical and arithmetic operations (.L1)	

  Branch, bit manipulation, and arithmetic operations (.S1)	

  Loading/storing and arithmetic operations (.D1)	

  Data path B	

  Multiply operations (.M2)	

  Logical and arithmetic operations (.L2)	

  Branch, bit manipulation, and arithmetic operations (.S2)	

  Loading/storing and arithmetic operations (.D2)	

  All data (not program) transfers go through .D1 and .D2	

Page 29 of 57	

Fetch & Execute Packets	

  C6713 fetches 8 instructions at a time (256 bits)	

  Definition: “Fetch packet” is a group of 8 instructions fetched

at once.	

  Coincidentally, C6713 has 8 functional units.	

  Ideally, all 8 instructions would be executed in parallel.	

  Often this isn’t possible, e.g.:	

  3 multiplies (only two .M functional units)	

  Results of instruction 3 needed by instruction 4 (must wait for 3 to

complete)	

Page 30 of 57	

Execute Packets	

  Definition: “Execute Packet” is a group of (8 or less)
consecutive instructions in one fetch packet that can be
executed in parallel.	

  C compiler provides a flag to indicate which
instructions should be run in parallel.	

  You have to do this manually in Assembly using the
double-pipe symbol “||”. See Chapter 3 of the Chassaing
and Reay textbook.	

Page 31 of 57	

1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	

fetch packet	

execute packet 1	

 execute packet 2	

 execute packet 3	

C6713 Instruction Pipeline Overview	

All instructions flow through the following steps:	

1.  Fetch	

a)  PG: Program address Generate	

b)  PS: Program address Send	

c)  PW: Program address ready Wait	

d)  PR: Program fetch packet Receive	

2.  Decode	

a)  DP: Instruction DisPatch	

b)  DC: Instruction DeCode	

3.  Execute	

a)  10 phases labeled E1-E10	

b)  Fixed point processors have only 5 phases (E1-E5)	

Page 32 of 57	

each step	

= 1 clock cycle	

Pipelining: Ideal Operation	

Page 33 of 57	

Remarks:	

•  At clock cycle 11, the pipeline is “full”	

•  There are no holes (“bubbles”) in the pipeline in this example	

Pipelining: “Actual” Operation	

Page 34 of 57	

Remarks:	

•  Fetch packet n has 3 execution packets	

•  All subsequent fetch packets have 1 execution packet	

•  Notice the holes/bubbles in the pipeline caused by lack of parallelization	

Execute Stage of C6713 Pipeline	

  C67x has 10 execute phases (floating point)	

  C62x/C64x have 5 execute phases (fixed point)	

  Different types of instructions require different numbers of

these phases to complete their execution	

  Anywhere between 1 and all 10 phases	

  Most instruction tie up their functional unit for only one phase (E1)	

Page 35 of 57	

Execution Stage Examples (1)	

Page 36 of 57	

Functional unit free after E1 ���
(1 functional unit latency)	

results available after E1 (zero
delay slots)	

Execution Stage Examples (2)	

Page 37 of 57	

results available after	

E4 (3 delay slots)	

Functional unit free after E1	

(1 functional unit latency)	

Execution Stage Examples (3)	

Page 38 of 57	

Results available after E10 (9
delay slots)	

Functional unit free after E4	

(4 functional unit latency)	

Functional Latency & Delay Slots	

  Functional Latency: How long must we wait for the
functional unit to be free?	

  Delay Slots: How long must we wait for the result?	

  General remarks:	

  Functional unit latency <= Delay slots	

  Strange results will occur in ASM code if you don’t pay

attention to delay slots and functional unit latency	

  All problems can be resolved by “waiting” with NOPs	

  Efficient ASM code tries to keep functional units busy all of

the time.	

  Efficient code is hard to write (and follow).	

Page 39 of 57	

Lunch Break	

Page 40 of 57	

Workshop resumes at 1:30pm…	

Some Things to Try	

  Try rewriting your FIR filter code as a C-
callable ASM function	

 Create a new ASM file	

 Call the ASM function from your main code	

  See Chassaing examples fircasm.pjt and
fircasmfast.pjt for ideas	

  Profile your new FIR code and compare to the
optimized compiler.	

Page 41 of 57	

Infinite Impulse Response (IIR) Filters	

  Advantages:	

  Can achieve a desired frequency response with less

memory and computation than FIR filters	

  Disadvantages:	

  Can be unstable	

  Affected more by finite-precision math due to feedback	

  Input/output relationship:	

Page 42 of 57	

IIR Filtering - Stability	

  Transfer function:	

  Note that the filter is stable only if all of its poles (roots of the
denominator) have magnitude less than 1.	

  Easy to check in Matlab: max(abs(roots(a)))	

  Quantization of coefficients (a’s and b’s) will move the poles. A

stable filter in infinite precision may not be stable after
coefficient quantization.	

  Numerator of H(z) does not affect stability.	

Page 43 of 57	

Creating IIR Filters	

Page 44 of 57	

1.  Design filter	

  Type: low pass, high pass, band pass, band stop, ...	

  Filter order N	

  Desired frequency response	

2.  Decide on a realization structure 	

3.  Decide how coefficients will be quantized.	

4.  Compute quantized coefficients	

5.  Decide how everything else will be quantized (input

samples, output samples, result of multiplies, result of
additions)	

6.  Write code to realize filter	

7.  Test filter and compare to theoretical expectations	

Matlab

CCS

IIR Realization Structures	

  Many different IIR realization structures available (see
options in Matlab’s fdatool)	

  Structures can have different memory and computational

requirements	

  All structures give the same behavior when the math is

infinite precision	

  Structures can have very different behavior when the math

is finite precision	

○  Stability	

○  Accuracy with respect to the desired response	

○  Potential for overflow/underflow	

Page 45 of 57	

Direct Form I	

Page 46 of 57	

Notation: 1/z = one sample delay	

Direct Form II	

Page 47 of 57	

Note that DFII has
fewer delay elements
(less memory) than
DFI. It has been
proven that DFII has
minimum number of
delay elements.	

Direct Form II: Second Order Sections	

  Transfer function H(z) is factored into H1(z)H2(z)…HK(z) where each

factor Hk(z) has a quadratic denominator and numerator	

  Each quadratic factor is called a “Second Order Section” (SOS)	

  Each SOS is realized in DFII	

  The results from each SOS are then passed to the next SOS (cascade)	

Page 48 of 57	

Direct Form II: Second Order Sections	

  Very popular realization structure	

  Low memory requirements (same as DFII)	

  Easy to check the stability of each SOS	

 Can write one DFII-SOS filter function and reuse it
for any length filter	

  Tends to be less sensitive to finite precision math
than DFI or DFII. Why?	

○ Dynamic range of coefficients in each SOS is smaller	

○ Coefficient quantization only affects local poles/zeros	

Page 49 of 57	

Interpreting Matlab’s Header Files
for IIR Filters in DFII-SOS	

  Each row of the NUM/DEN arrays in the header file contains 3 coefficients. 	

  The numerator (NUM) coefficients in each row, from left to right, are b[0], b[1],

and b[2] in the usual notation. 	

  The denominator (DEN) coefficients in each row, from left to right, are a[0], a

[1], and a[2] in the usual notation. 	

  Note that a[0] is always equal to 1 and that we don't use it in our calculations

(refer to the IIR input/output equation).	

  The rows are processed from top to bottom. For each row:	

  compute u[n] using the denominator coefficients (and your scaled x[n] from the
prior row) 	

  compute y[n] using the numerator coefficients. 	

  Since you know that your filter always have 3 coefficients in this case, you
should be able to write one SOS function that does this efficiently.	

Page 50 of 57	

Determining How Coefficient Quantization
Will Affect Your Filter	

Page 51 of 57	

set quantization	

parameters	

IIR Filtering Final Remarks	

  IIR filters are more sensitive to choice of realization
structure and data types than FIR filters due to
feedback	

  Memory requirements	

  Time required to compute filter output	

  Accuracy with respect to the desired response	

  Stability	

  Potential for overflow/underflow	

  Matlab’s fdatool can be useful for examining the
tradeoffs before writing code	

Page 52 of 57	

Some Things to Try	

  In fdatool, design an IIR filter with the following specs:	

  Bandstop	

  First passband 0-2500Hz, 0dB nominal gain, 0.5dB max deviation	

  First transition band 2500-3500Hz	

  Stop band 3500-10500Hz, -20dB minimum suppression	

  Second transition band 10500-12500Hz	

  Second passband 12500-22050Hz 0dB nominal gain, 0.5dB max deviation	

  Minimum filter order	

  Explore DFII with and without Second Order Sections	

  Try various coefficient quantizations including fixed point	

  Implement your “best” filter in CCS	

  Compare actual performance to the theoretical predictions	

Page 53 of 57	

Other Interesting Applications of Real-
Time DSP	

  Fast Fourier Transform (FFT): Chapter 6	

  Example projects:	

○ DFT, FFT256C, FFTSinetable, FFTr2, FFTr4,

FFTr4_sim, fastconvo, fastconvo_sim, graphicEQ	

○ Note that TI provides optimized FFT functions

(search for cfftr2_dit, cfftr2_dif, cfftr4_dif)	

 Adaptive Filtering: Chapter 7	

  Example projects:	

○ Adaptc, adaptnoise, adaptnoise_2IN, adaptIDFIR,

adaptIDFIRw, adaptIDIIR, adaptpredict,
adaptpredict_2IN, 	

Page 54 of 57	

Workshop Day 2 Summary	

What you learned today:	

  Some of the functions available in Matlab’s Link for Code Composer Studio	

  How to profile code size and execution times.	

  How data types and memory usage affect code execution times.	

  How to reduce code size and execution time with CCS’s optimizing compiler.	

  How assembly language can be integrated into your projects.	

  Basics of the TMS320C6713 architecture.	

○  Fetch packets, execute packets, pipelining	

○  Functional unit latency and delay slots	

  How to design and implement IIR filters on the C6713	

○  Realization structures	

○  Quantization considerations	

  Other applications for the C6713 DSK	

○  FFT	

○  Adaptive filtering	

Page 55 of 57	

Workshop Day 2 Reference Material	

  Matlab’s Link for Code Composer Studio help (>> doc ccslink) 	

  Chassaing textbook Chapters 3, 5-8	

  CCS Help system	

  SPRU509F.PDF CCS v3.1 IDE Getting Started Guide	

  C6713DSK.HLP C6713 DSK specific help material	

  SPRU198G.PDF TMS320C6000 Programmer’s Guide	

  SPRU189F.PDF TMS320C6000 CPU and Instruction Set

Reference Guide	

  Matlab fdatool help (>> doc fdatool)	

  Other Matlab help (>> doc soundsc >> doc wavwrite)	

Page 56 of 57	

Latest documentation available at ���
http://www.ti.com/sc/docs/psheets/man_dsp.htm	

Additional Exploration	

  Explore some of Chassaing’s FFT and adaptive filtering
projects in the “myprojects” directory	

  Explore some of the reference literature (especially the
Chassaing text and the CCS help system)	

  Try a lab assignment in the ECE4703 real-time DSP
course: http://spinlab.wpi.edu/courses/ece4703	

Page 57 of 57	

