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Matlab’s Link for Code Composer Studio
(Now Called Matlab’s Embedded IDE Link)

Yesterday we used Matlab to design an FIR filter.

The “Link for Code Composer Studio” (now called
Matlab’s Embedded IDE Link) toolbox allows even
more direct Matlab-CCS integration.

MATLAB® and Simulink® Algorithm exploration and

Link for Code Composer Studio™

Model-Based Design

Software verification and
debugging
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Matlab’s Link for CCS:
Compatibility Considerations

To use Matlab’s link for CCS, the Matlab and CCS versions must
be compatible:

R2007a
R2007b-present

Code Composer Studio is now available in version 4.0.

Upgrade information for CCS v3.3 can be found here:

http://focus.ti.com/docs/toolsw/folders/print/ccstudio.html
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Matlab’s Link for CCS: Basics (R2007a / CCS v3.1)

% make sure DSK is connected to the computer via USB
% and is on before proceeding

% display a list of available DSP boards and processors
ccsboardinfo

% create Matlab/CCS 1ink for board=0, processor=0
cc = ccsdsp(‘boardnum’,@,’procnum’,0);

% get information about the status and capabilities of the link
display(cc)

info(cc)

isrunning(cc)

isrtdxcapable(cc)

getproc(cc)

% make CCS visible
visible(cc,1)
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Opening, building, loading, and running a project

cd(cc,’c:\myproject\helloworld’);
open(cc,’helloworld.pjt’);

build(cc,’all’)
load(cc, ’Debug\helloworld.out’)

restart(cc)
run(cc)
isrunning(cc)

halt(cc)
isrunning(cc)
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Reading/Writing DSK Variables

Uint32 temp;
short foo[ 100];

(variables declared in CCS)

% Important: Do not attempt to read/write data from/to the DSK while it is running.

% Insert one or more breakpoints in the code, run to the breakpoint,
% perform the read, then resume execution

% confirm the DSK is not running
isrunning(cc)

% create an object for the DSK variables temp and foo (can be global or local)
tempobj = createobj(cc,’temp’);
fooobj = createobj(cc,’foo’);

% read/write examples

X = read(tempobj) % DSK temp -> Matlab x
write(tempobj,1234) % 1234 -> DSK temp

y = read(cc,fooobj) % DSK foo -> Matlab y (whole array)
z = read(cc,fooobj,10) % DSK foo -> Matlab y (10th element)
write(fooobj,4,999) % 999 -> DSK foo (4th element)
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Useful things that you can do with Matlab’s
Link for CCS
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: Halt execution on the DSK (halt),
write new filter coefficients (write), resume
execution (restart/run), and test your filter without
rebuilding the project.

: Generate a specific test
signal in Matlab, overwrite the codec samples (write)
with your test signal samples, run the processing
code on the DSK, observe the output.

: Read the contents of
the a filter output (read) to Matlab, analyze the
spectrum or other properties, generate plots.
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Tip: Making Interesting Test Signals in Matlab

>> fs=44100; % set up sampling frequency

>> t=0:1/fs:5; % time vector (5 seconds long)

>> x=[sin(2*pi*1000*t’) cos(2*pi*1000*t’)]; % left = sin, right = cos
>> soundsc(x,fs); % play sound through sound card

>> L=length(t);
>> x=[randn(L, ) randn(L,1)];
>> soundsc(x,fs); % play sound through sound card

These signals are all generated as double precision floats but can be cast to fixed
point or integer formats if necessary.

You can save your signals to .wav files with Matlab’s wavwrite function. These .wav
files can be burned to CD and played with conventional stereo equipment.
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Profiling Your Code and Making it More
Efficient

Y
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How to estimate the
of your code.

How to use the to
produce more efficient code.

How and
affect the efficiency of your code.
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How to estimate code execution time
when connected to the DSK

Start CCS with the C6713 DSK connected

(or alt+C)
Open project, build it, and load .out file to the DSK
Open the source file you wish to profile

Set two breakpoints for the start/end of the code range you wish to profile

Run to the first breakpoint
Reset the clock
Run to the second breakpoint

Clock will show raw number of execution cycles between breakpoints.

2

‘ (%) : 344 Lihe 17, Address 00001840

L

Tip:You can save your breakpoints, probe points, graphs, and watch windows with
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Another method for estimating code
execution time (part | of 3)

OGhwR Al
Repeat steps |-4 previous method. Labl4.out

Clear any breakpoints in your

Code [0 ExecutionPacket
O Interruptdcknowledge
O InteruptContextSwitch
[0 L1DCleanDityWictimsReplace

CI I( O L1DDityVictimsReplacel2
ICK ONn O L1DRwHitOnPO

O L1DRWHitOnP1

Select “Cycles” 0] L1DRWMissOrP0
O L1DRWMissOnP1

Click on clock (enable profiling)

Aetivities ‘Ranges ‘Comrol Custom

: 2
e 2
i
¢ &

~
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=
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Another method for estimating code
execution time (part 2 of 3)

Select

Highlight code you want to profile
and drag into ranges window (hint:

you can drag whole functions into
this window)

Repeat for other ranges if desired
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Address

- iFunctions
=l Enabled
0 senalPortRcvISR B4-82:dsk_firc  Ox3ed-0x6...
+ Disabled
[+ Loops
#- Ranges

Activiies  Ranges |Control ‘Custom




Another method for estimating code
execution time (part 3 of 3)

Run (let it run for a minute or more)
Halt

Observe profiling results in Profile Viewer window

Profile Yiewer << 0 > Current - C6713 DSK/CPU _1

64-82.dsk_fir.c function

Address Range [Symbol Hame Symbol Type Cycles: Incl. Avg. |Cycles: Excl. Avg.
0:0x3e4-0x670 serialPortRcvISR

Hint: edit the columns to see averages
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What does it mean!

is the number of times that CCS
profiled the function
Note that the function was probably called more
than 49 times. CCS only timed it 49 times.

is the average number of
cycles needed to run the function including any
calls to subroutines

is the average number of
cycles needed to run the function excluding any
calls to subroutines
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Optimizing Compiler

Build Options for Dotp4.pjt

General Compiler | Linker | Link Order |

J t 1C671 ' DSK/CPU 1 - C67xx - Code Compos -g -5 -03 -fi"C:\tivmyprojects\DotpdiDebug" -d"CHIP_E713" -mvE710

File Edit Yiew Project Debug Profiler GEL Option

B = L0 New.., ‘
ER-A%EN Spen... Category: ~Basic

Dotp4.pit ‘ Add Files to Project... i T arget Yersion: 68?1:-: [-mvE710) l
- ave » Generate Debug Info: | Full Symbolic Debug (-a) v )

Close Opt Speed vs Size: Speed Most Critical [no -ms) v |

Use External Makefile... i Opt Level: gpeeg most %ritticall [[no -g;s]
- reprocessor peed More Critical [-ms
gt bo Maketie Diagnostics Program Level Opt.: |Speed Critical(-ms1)
Size Critical (-ms2)

S Control . .
ource Contro Size Most Critical [-ms3

Build
Rebuild Al
Category: —Basic

) Basic Target Version: C6?1 % [-mvE710) » l
Build Clean Advanced ( . |
_ . Feedback Generate Debug Info: I Full Symbolic Debug [-g) v I
Configurations. .. Files .
T T Assembly Opt Speed vs Size: Speed Most Critical (nho -ms] +» I
Parser Opt Level: | File [-03) v I

Preprocessor - N o

i i rogram Level Opt.:

Diagnostics a p Register (-00)]
Local [-01)

File [-03
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Profiling results after compiler optimization

In this example, we get a 3x-4x improvement with
“Speed Most Critical” and “File (-03)” optimization

Optimization gains can be much larger, e.g. 20x

Profile Yiewer << 0 >> Current - (6713 DSK/CPU_1

Address Range |Symbol Hame Symbol Type Cycles: Incl. Avg. |Cycles: Excl. Avg.

0:0x9a0-0xadc serialPoRcvISR  [64-82:dsk_firc function
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Limitations of hardware profiling

Breakpoint/clock profiling method may not work with
compiler-optimized code

method is known to be somewhat
inaccurate when connected to real hardware (see
“profiling limitations” in CCS help)

Accuracy is better when only one or two ranges are
profiled

Best accuracy is achieved by running a simulator
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Running CCS with a Cycle-Accurate Simulator

A i . T, 3
Recycle I *® Code Composer Studio Setup (=[x
File Edit Yiew Help

System Configuration Available Factory Boards i Elstfom Edaess C_67XX CPU Cycle Accurate ‘Al
- - Janr e vl v Simulator
6713 DSK = My System BF:C6201 Device Simulator CH2xx simulator  little
CCStudio v3.1 - H@ C6713 DSK EH: C6202 Device Simulator CE2xx simulator  little Configuration File Location:
Q CPU_L B¥: C6203 Device Simulator CH2xx simulator  little
BE: C6204 Device Simulator CH2xx simulator little
- B: C6205 Device Simulator CH2xx simulator  little
DigllrsngK - B C6211 Device Cycle Accurate Sim...  C62xx simulator little
R C62xx CPU Cycle Accurate Simulator  Cé2xx simulator little
R C6411 Device Cycle Accurate Sim... Cé4xx simulator little
B3 C6412 Device Cycle Accurate Sim...  Cé4xx simulator little
B3 C6414 Device Cycle Accurate Sim... Cé4xx simulator little
B8 C6415 Device Cycle Accurate Sim...  Cé4xx simulator little
B C6416 Device Cycle Accurate Sim...  C64xx simulator little
Bl C64xx CPU Cycle Accurate Simulator  Cé4xx simulator little
B3 DM642 Device Cycle Accurate Sim... Cé4xx simulator little
B C6701 Device Simulator Ca7xx simulator little
B C6711 Device Cycle Accurate Sim.., C67xx simulator little
B C6712 Device Cycle Accurate Sim...  C67xx simulator little
BR:C6713 DSK CB7xx dsk B
R C6713 Device Cycle Accurate Sim.., C67xx simulator little
EF:C67xx CPU Cycle Accurate Simulator: C67xx simulator little

i‘%
7]

Pre-Configured Board Description:

E® Factory Boards | B® Custom Boards | #» Create Board |

WMATLAD S

s | Save & Quit | Hemove Remove Al | | << Add I Add b ultiy |
E

make_test_...

Drag a device driver to the left to add a board to the system.

Limitations include not being able to use any DSK functionality (AIC23 codec, etc.)

{'} TEXAS INSTRUMENTS Technology for Innovators™ @IEEE




Other factors affecting code efficiency

Memory
C6713 has 256kB internal SRAM

Up to 64kB of this SRAM can be configured as shared L2 cache
DSK provides additional 16MB external RAM (SDRAM)

Code location (.text in linker command file)
o internal SRAM memory (fast)

o external SDRAM memory (typically 2-4x slower, depends on cache
configuration)

Data location (.data in linker command file)
o internal SRAM memory (fast)

o external SDRAM memory (slower, depends on datatypes and cache
configuration)

Data types

Slowest execution is double-precision floating point
Fastest execution is fixed point, e.g. short
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TMS320C6713 DSK Memory Map

C67x Family
Address

Memory Type

6713 DSK
0x00000000

Internal Memory Intemal

Memory
0x00030000

Reserved Space Reserved
or

or
Peripheral Regs Peripheral

EMIF CEO SDRAM

0x80000000

0x90000000
EMIF CE1 CPLD | 0x90080000
0xA0000000
EMIF CE2
Daughter
0xB0000000 Card
EMIF CE3
Figure 1-2, Memory Map, C6713 DSK
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Linker Command File Example

MEMORY
{
vecs: o = 00000000h 1 = 00000200h
IRAM: o = 00000200h 1 = 0002FEOOh
CEO: o = 80000000h 1 = 01000000h
}
SECTIONS
{
.vectors > vecs
.cinit > IRAM
. text > IRAM
.stack > IRAM
.bss > IRAM
SEONSTE s Wit Addresses 00000000-0002FFFF correspond to the lowest
.data = IRAM | 92kB of internal memory (SRAM) and are labeled “IRAM”.
. far > IRAM
-switch = IRAM External memory is mapped to address range 80000000 —
2 EELIEL = Wit 80FFFFFF This is 6MB and is labeled “CEO”.
.tables > IRAM
2Clo = IRAM Both code and data are placed in the C6713 internal SRAM in
} this example. Interrupt vectors are also in SRAM.
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TMS320C6000 C/C++Data Types

Size

g hits

g hits

16 hits
16 hits
32 hits
32 hits
40 hits
40 hits
32 hits
32 bits
64 bits
64 bits

Type
char, signed char

unsigned char
short

unsigned short
int, signed int
unsigned int
long, signed long
unsigned long
enum

float

double

long double

i TEXAS INSTRUMENTS

Representation
ASCI

ASCI

25 complement
Binary

28 complement
Binary

28 complement
Binary

28 complement
IEEE 32-bit
IEEE 64-hit
IEEE 32-bit

Minimum

-128

0

-32768

0

-2147483648

0

-5497555813868

0

-21474836485
1.175494e-361
2.22507385e-3087
2.22507385e-30587

Technology for Innovators™

Range

Maximum

127

255

32767

65535

214783647
4294967295
5497558138587
1099511627775
214783647
3.40252346e+38
1.79769313e+308
1.79769313e+308




Some Things to Try

Try profiling parts of your FIR filter code from Day | without
optimization. Try both profiling methods.

Rebuild your project under various optimization levels and try various
settings from “size most critical” to “speed most critical”.

Compare profile results for no optimization and various levels of
optimization.

Change the data types in your FIR filter code and rebuild (with and
without optimization) to see the effect on performance.

Try moving the data and/or program to internal/external memory and
profiling (you will need to modify the linker command file to do this)

Contest: Who can make the most efficient 8th order bandpass filter
(that works)?

WYTEC,
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Assembly Language Programming on the
TMS320C6713

To achieve the best possible performance, sometimes you
have to take matters into your own hands...

Three options:
Linear assembly (.sa)
o Compromise between effort and efficiency
o Typically more efficient than C

o Assembler takes care of details like assigning “functional units”,
registers, and parallelizing instructions

ASM statement in C code (.c)
o asm(“assembly code”)

C-callable assembly function (.asm)

o Full control of assigning functional units, registers, parallelization,
and pipeline optimization

QO\XTECI’/I/
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C-Callable Assembly Language Functions

Basic concepts:

Arguments are passed in via registers A4, B4,A6, B6, ... in
that order. All registers are 32-bit.

Result returned in A4 also.

Return address of calling code (program counter) is in B3.
Don’t overwrite B3!

Naming conventions:

o In C code: label

o In ASM code: label (note the leading underbar)
Accessing global variables in ASM:

o .ref _variablename

QO‘XTECIy,v
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Skeleton C-Callable ASM Function

; header comments
; passed in parameters in registers A4, B4,A6, ... in that order

.def _myfunc ; allow calls from external
ACONSTANT .equ 100 ; declare constants

.ref _aglobalvariable ; refer to a global variable
_myfunc: NOP ; instructions go here

B B3 ; return (branch to addr B3)

; function output will be in A4
NOP 5 ; pipeline flush
.end

QO\XTEC,%
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Example C-Callable Assembly Language Program
int fircasmfunc(short x[], short h[], int N)

;FIRCASMfunc.asm ASM function called from C to implement FIR
;A4 = Samples address, B4 = coeff address, A6 = filter order
;Delays organized as:x(n-{(N-1))...x(n);coeff as h[0]...h[N-1]

def
_fircasmfunc:
MV
MPY
ZERO
ADD
=UB

LDH
LDH
NOP
MPY
NOP
ADD
LDH
NOP
STH
SUB

[A1] B
NOP

‘i‘ TEXAS INSTRUMENTS Technology for Innovators™

_fircasmfunc
;ASM function called from C
Ab,Al ;setup loop count
Ab,2,AB ;since dly buffer data as byte
AB ;init AB for accumulation
Ab,B4,B4 ;since coeff buffer data as byte
BE4,1,B4 ;B4=bottom coeff array h[N-1]
;start of FIR loop
*hd4++ A2 ;A2=x[n-(N-1)+1i] i=0,1,...,N-1
*B4-- ,B2 sB2=hM=-1=i1a2=0,1,...:8=1
&
A2,B2,Ab ;A6=x[n-(N-1)+i]*h[N-1-1i]

Ab,AB,AB ;accumlate in AS

*hd AT ;A7=x[(n-(N-1)+1+1]update delays
4 using data move "up"

A7,%-A4[1] :-->x[(n-(N-1)+1] update sample
Al,1,Al ;decrement loop count

loop ;branch to loop if count # 0O

5

AB,A4 ;result returned in A4

B3 ;return addr to calling routine
4




TMS320C67x Block Diagram

CB2x/CB4x/C67x device

Program cache/program memory
32-bit address
256-bit data

C62x/C64x/C67x CPU

Program fetch

Instruction dispatch (See Note) Control

- registers
Instruction decode 9

Data path A Data path B
DMA, EMIF Cont_rol
Register file A Register file B logic

Interrupts

Additional
peripherals:

Timers,
serial ports,
efc.

Data cache/data memory
32-bit address

8-, 16-, 32-bit data (64-bit data, C64x only)

*? TEXAS INSTRUMENTS Technology for Innovators™

One instruction is 32
bits. Program bus is 256 bits
wide.

= Can execute up to 8
instructions per clock cycle
(225MHz->4.4ns clock cycle).

8 independent functional units:

- 2 multipliers
- 6 ALUs

Code is efficient if all 8
functional units are always busy.

Register files each have 16

general purpose registers, each
32-bits wide (AO-A15,B0-BI5).

Data paths are each 64 bits
wide.

& IEEE




C6/713 Functional Units

Two data paths (A & B)

Data path A
Multiply operations ()
Logical and arithmetic operations (' )
Branch, bit manipulation, and arithmetic operations (= )
Loading/storing and arithmetic operations (')
Data path B
Multiply operations ()
Logical and arithmetic operations (' )
Branch, bit manipulation, and arithmetic operations (=)
Loading/storing and arithmetic operations ()

All data (not program) transfers go through and

QO‘XTEC/Y,‘,
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Fetch & Execute Packets

C6713 fetches 8 instructions at a time (256 bits)

Definition: “Fetch packet” is a group of 8 instructions fetched
at once.

Coincidentally, C6713 has 8 functional units.

|deally, all 8 instructions would be executed in parallel.

Often this isn’t possible, e.g.:
3 multiplies (only two .M functional units)

Results of instruction 3 needed by instruction 4 (must wait for 3 to
complete)

Qs
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Execute Packets

Definition: “Execute Packet” is a group of (8 or less)
consecutive instructions in one fetch packet that can be
executed in parallel.

fetch packet
A~

~ I
L1 [ 2 [ 3 4 5 6 7 8
_ N A _/
Y Y Y
execute packet | execute packet 2 execute packet 3

C compiler provides a flag to indicate which
instructions should be run in parallel.

You have to do this manually in Assembly using the
double-pipe symbol “||”. See Chapter 3 of the Chassaing
and Reay textbook.

‘,’} TEXAS INSTRUMENTS Technology for Innovators™ @IEEE




C6713 Instruction Pipeline Overview

All instructions flow through the following steps:

a)  PG:Program address Generate

b)  PS:Program address Send

c)  PW:Program address ready Wait
) PR:Program fetch packet Receive

a)  DP:Instruction DisPatch
b)  DC:lInstruction DeCode

a) 10 phases labeled EI-EIOQ
b)  Fixed point processors have only 5 phases (El-E5)

Figure 7-5. Floating-Point Pipeline Phases
4—— Fetch ———— >4 Decode Execute

each step
= | clock cycle

{'} TEXAS INSTRUMENTS Technology for Innovators™




Pipelining: Ideal Operation

Clock cycle

* At clock cycle 11, the pipeline is “full”
* There are no holes (“bubbles”) in the pipeline in this example

| BN Z 2 ™
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Pipelining:“Actual” Operation

Clock cycle

Fetch Execute
packet packet
(FP) (EP) 1 2 3 4 5 6 11 12 13 14

n k PG PS PW PR |DP DC | E1 ES E6 E7 E8

n k+1 DP- DC E4 E5 E6 ET7
n k+2 E3 E4 ES5 ES6

43 — = o = e
4 — = o
+5 — R

k+6 oc | E1  E2
k+7 PS PW PR | DP DC | E1

k+8 PG Ps Pw PR [DP |DC

* Fetch packet n has 3 execution packets
* All subsequent fetch packets have | execution packet

* Notice the holes/bubbles in the pipeline caused by lack of parallelization

QO‘XTEC/Y,‘,
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Execute Stage of C6713 Pipeline

C67x has |10 execute phases (floating point)
Figure 7-5. Floating-Point Pipeline Phases

44— Fetch ———— >4 Decode

Execute

1 I e 2 0 A 5 0 3 0 A A G

C62x/Cé4x have 5 execute phases (fixed point)

Different types of instructions require different numbers of
these phases to complete their execution

Anywhere between | and all 10 phases

Most instruction tie up their functional unit for only one phase (El)

:o < *L‘ TEXAS INSTRUMENTS | Technology for Innovators™ @IEEE
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Execution Stage Examples (1)
Single-Precision Floating-Point Absolute Value

ABSSP (.unit) src2, dst

Syntax
unit=.S1or .S2

Opcode map field used... For operand type...

src2 XSp
dst sp

results available after E| (zero
delay slots)

Pipeline Pipeline
Stage

Read
Functional unit free after E|

Written (I functional unit latency)

Unit in use

Instruction Type Single-cycle

QO\XTEQ’/‘,
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Execution Stage Examples (2)

ADDSP

Syntax

Pipeline

Instruction Type
Delay Slots

Functional Unit
Latency

Single-Precision Floating-Point Addition

ADDSP (.unit) sre1, src2, dst

unit=_L1or L2

Pipeline
Stage

Read

Written

Unit in use

4-cycle

3

Functional unit free after E|

1 — (I functional unit latency)

i TEXAS INSTRUMENTS
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results available after
E4 (3 delay slots)




Execution Stage Examples (3)

MPYDP Double-Precision Floating-Point Multiply

Syntax MPYDP (.unit) srec1, src2, dst

.unit=_M1 or M2

Pipeline
Stage E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

Read srcl | src1 | src1_h srcl_h
src2 | src2 h src2 | src2 h

Pipeline

Written dst | dst h
Unit in use M M M M

If dst i1s used as the source for the ADDDP, CMPEQDP, CMPLTDP,
CMPGTDP, MPYDP, or SUBDP instruction, the number of delay slots can be
reduced by one, because these instructions read the lower word of the DP
source one cycle before the upper word of the DP source.

Instruction Type MPYDP Results available after E10 (9

/ delay slots)
9

Functional unit free after E4
Functional Unit A (4 functional unit latency)

Latency
‘i‘ TEXAS INSTRUMENTS Technology for Innovators™ @IEEE
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Functional Latency & Delay Slots

: How long must we wait for the
functional unit to be free!

: How long must we wait for the result?

General remarks:
Functional unit latency <= Delay slots

Strange results will occur in ASM code if you don’t pay
attention to delay slots and functional unit latency

All problems can be resolved by “waiting” with NOPs

Efficient ASM code tries to keep functional units busy all of
the time.

Efficient code is hard to write (and follow).
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Lunch Break

Workshop resumes at [:30pm...
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Some Things to Try

Try rewriting your FIR filter code as a C-
callable ASM function

Create a new ASM file
Call the ASM function from your main code

See Chassaing examples fircasm.pjt and
fircasmfast.pjt for ideas

Profile your new FIR code and compare to the
optimized compiler.

QO‘XTEC/Y,‘,
§ #2a 0 .
el !'J%“ ;94 ‘,’) TexAs INSTRUMENTS = Technology for Innovators™ @IEEE
%, Y ¥
~ 1865 °




Infinite Impulse Response (lIR) Filters

Advantages:

Can achieve a desired frequency response with less
memory and computation than FIR filters

Disadvantages:
Can be unstable

Affected more by finite-precision math due to feedback

Input/output relationship:

N—-1

n] = i blklz[n — k] — )  alklyln — &
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lIR Filtering - Stability

Transfer function:

ZkM_gl b[k]z—k Cbo bz by (MD)

14y M alkek ltaz 4o tay gz D

Note that the filter is stable only if all of its poles (roots of the
denominator) have magnitude less than |.

Easy to check in Matlab: max(abs(roots(a)))

Quantization of coefficients (a’s and b’s) will move the poles. A
stable filter in infinite precision

Numerator of H(z) does not affect stability.
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Creating |IR Filters

Design filter
e TJype:low pass, high pass, band pass, band stop, ...
e Filter order N
e Desired frequency response

Decide on a realization structure

Decide how coefficients will be quantized.
Compute quantized coefficients

Decide how everything else will be quantized (input
samples, output samples, result of multiplies, result of

additions)
Write code to realize filter CCS
Test filter and compare to theoretical expectations
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IR Realization Structures

Many different lIR realization structures available (see
options in Matlab’s fdatool)

Structures can have different memory and computational
requirements

All structures give the same behavior when the math is
infinite precision

Structures can have very different behavior when the math
is finite precision

o Stability

o Accuracy with respect to the desired response

o Potential for overflow/underflow
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Direct Form |

P00 000 >
,

>

Notation: |/z = one sample delay
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Direct Form Il

Note that DFIl has
fewer delay elements
(less memory) than
DFI. It has been
proven that DFIl has
minimum number of
delay elements.
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Direct Form ll: Second Order Sections

Transfer function H(z) is factored into H,(z)H,(z)...Hy(z) where each
factor H,(z) has a quadratic denominator and numerator

Each quadratic factor is called a “Second Order Section” (SOS)
Each SOS is realized in DFII

The results from each SOS are then passed to the next SOS (cascade)
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Direct Form ll: Second Order Sections

Very popular realization structure

Low memory requirements (same as DFll)
Easy to check the stability of each SOS

Can write one DFII-SOS filter function and reuse it
for any length filter

Tends to be less sensitive to finite precision math
than DFI or DFIl.Why!?

o Dynamic range of coefficients in each SOS is smaller

o Coefficient quantization only affects local poles/zeros
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Interpreting Matlab’s Header Files
for lIR Filters in DFII-SOS

Each row of the NUM/DEN arrays in the header file contains 3 coefficients.
The numerator (NUM) coefficients in each row, from left to right, are b[0], b[ 1],
and b[2] in the usual notation.

The denominator (DEN) coefficients in each row, from left to right, are a[0], a
[1],and a[2] in the usual notation.

Note that a[0] is always equal to | and that we don't use it in our calculations
(refer to the IR input/output equation).
The rows are processed from top to bottom. For each row:

compute u[n] using the denominator coefficients (and your scaled x[n] from the
prior row)

compute y[n] using the numerator coefficients.

Since you know that your filter always have 3 coefficients in this case, you
should be able to write one SOS function that does this efficiently.
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Determining How Coefficient Quantization
Will Affect Your Filter

—

B Filter Design & Analysis Tool - [untitled.fda *]
File Edit Analysis Targets View Window Help

DEEER (>« (229X 0 HNEM#+0 BLHONE| N

Current Filter Information Magnitude Response (dB)

100

Structure:  Lattice
Autoregressive
Moving-Average
(ARMA)

Order: 3

Sections: 1

Stable: Yes ' ' ' '

Source: Desighed «« ————————————— ——————————
(converted)

........................................

...................................................................

Magnitude (dB)

: 10

Frequency (kHz)
Fitter Manager ...

Fiter arithmetic: "VDoubIe-precision floating-point v

There are ho additional seftings for Double-precision floating-point arithmetic.
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lIR Filtering Final Remarks

lIR filters are more sensitive to choice of
and than FIR filters due to
feedback
Memory requirements
Time required to compute filter output
Accuracy with respect to the desired response
Stability

Potential for overflow/underflow

Matlab’s fdatool can be useful for examining the
tradeoffs before writing code
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Some Things to Try

In fdatool, design an IIR filter with the following specs:

Bandstop
First passband 0-2500Hz, 0dB nominal gain, 0.5dB max deviation

First transition band 2500-3500Hz
Stop band 3500-10500Hz, -20dB minimum suppression
Second transition band 10500-12500Hz
Second passband 12500-22050Hz 0dB nominal gain, 0.5dB max deviation
Minimum filter order
Explore DFIl with and without Second Order Sections
Try various coefficient quantizations including fixed point
Implement your “best” filter in CCS
Compare actual performance to the theoretical predictions
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Other Interesting Applications of Real-
Time DSP

Fast Fourier Transform (FFT): Chapter 6

Example projects:

o DFT, FFT256C, FFTSinetable, FFTr2, FFTr4,
FFTr4 sim, fastconvo, fastconvo_sim, graphicEQ

o Note that Tl provides optimized FFT functions
(search for cfftr2_dit, cfftr2_dif, cfftr4_dif)

Adaptive Filtering: Chapter 7

Example projects:

o Adaptc, adaptnoise, adaptnoise_2IN, adaptIDFIR,
adaptIDFIRw, adaptIDIIR, adaptpredict,
adaptpredict 2IN,
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Workshop Day 2 Summary
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Dupeny

Some of the functions available in Matlab’s Link for Code Composer Studio
How to profile code size and execution times.

How data types and memory usage affect code execution times.

How to reduce code size and execution time with CCS’s optimizing compiler.
How assembly language can be integrated into your projects.

Basics of the TMS320C67 13 architecture.

o Fetch packets, execute packets, pipelining

o Functional unit latency and delay slots

How to design and implement IIR filters on the C6713

o Realization structures

o Quantization considerations

Other applications for the C6713 DSK

o FFT

o Adaptive filtering
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Workshop Day 2 Reference Material

Matlab’s Link for Code Composer Studio help (>> doc ccslink)
Chassaing textbook Chapters 3, 5-8

CCS Help system

SPRUS09FEPDF CCS v3.1| IDE Getting Started Guide
C6713DSK.HLP C6713 DSK specific help material
SPRU198G.PDF TMS320C6000 Programmer’s Guide

SPRUI89FEPDF TMS320C6000 CPU and Instruction Set
Reference Guide

Matlab fdatool help (>> doc fdatool)
Other Matlab help (>> doc soundsc >> doc wavwrite)

©@ © ® © ® © ®

OO,

Latest documentation available at

http://www.ti.com/sc/docs/psheets/man_dsp.htm
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Add

Exp

proj

Exp

itional Exploration

ore some of Chassaing’s FFT and adaptive filtering
ects in the “myprojects” directory

ore some of the reference literature (especially the

Chassaing text and the CCS help system)

Try a lab assignment in the ECE4703 real-time DSP
course: http://spinlab.wpi.edu/courses/ece4703
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