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Day 2 handouts	





Matlab’s Link for Code Composer Studio���
(Now Called Matlab’s Embedded IDE Link)	



  Yesterday we used Matlab to design an FIR filter.	



  The “Link for Code Composer Studio” (now called 
Matlab’s Embedded IDE Link) toolbox allows even 
more direct Matlab-CCS integration.	
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Matlab’s Link for CCS: ���
Compatibility Considerations	



  To use Matlab’s link for CCS, the Matlab and CCS versions must 
be compatible:	



  Code Composer Studio is now available in version 4.0.	



  Upgrade information for CCS v3.3 can be found here: ���

http://focus.ti.com/docs/toolsw/folders/print/ccstudio.html	
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Matlab Version	

 Compatible CCS version	



R2007a	

 v3.1	



R2007b-present	

 v3.3	





Matlab’s Link for CCS: Basics (R2007a / CCS v3.1)	



% make sure DSK is connected to the computer via USB	
% and is on before proceeding	

% display a list of available DSP boards and processors	
ccsboardinfo	

% create Matlab/CCS link for board=0, processor=0 		
cc = ccsdsp(‘boardnum’,0,’procnum’,0);	

% get information about the status and capabilities of the link	
display(cc)	
info(cc)	
isrunning(cc)	
isrtdxcapable(cc)	
getproc(cc)	

% make CCS visible	
visible(cc,1)	
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Opening, building, loading, and running a project	



% open existing project	
cd(cc,’c:\myproject\helloworld’);	
open(cc,’helloworld.pjt’);	

% build the project (returns a value of 1 if successful)	
build(cc,’all’)	

% load the binary file to the DSK	
load(cc,’Debug\helloworld.out’)	

% run the code on the DSK and check to see if it is running	
restart(cc)	
run(cc)	
isrunning(cc)	

% halt execution on the DSK and check to see if it stopped	
halt(cc)	
isrunning(cc)	
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Reading/Writing DSK Variables	



% Important: Do not attempt to read/write data from/to the DSK while it is running. 	
% Insert one or more breakpoints in the code, run to the breakpoint,	
% perform the read, then resume execution	

% confirm the DSK is not running	
isrunning(cc)	

% create an object for the DSK variables temp and foo (can be global or local)	
tempobj = createobj(cc,’temp’);	
fooobj = createobj(cc,’foo’);	

% read/write examples	
x = read(tempobj)	 	 	% DSK temp -> Matlab x	
write(tempobj,1234) 	 	% 1234 -> DSK temp	
y = read(cc,fooobj) 	 	% DSK foo -> Matlab y (whole array)	
z = read(cc,fooobj,10) 	 	% DSK foo -> Matlab y (10th element)	
write(fooobj,4,999) 	 	% 999 -> DSK foo (4th element)	
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Uint32 temp;	


short foo[100];	



(variables declared in CCS)	





Useful things that you can do with Matlab’s 
Link for CCS	



1.  Rapid filter design: Halt execution on the DSK (halt), 
write new filter coefficients (write), resume 
execution (restart/run), and test your filter without 
rebuilding the project.	



2.  Use specific test signals: Generate a specific test 
signal in Matlab, overwrite the codec samples (write) 
with your test signal samples, run the processing 
code on the DSK, observe the output.	



3.  Rapid data analysis/graphing: Read the contents of 
the a filter output (read) to Matlab, analyze the 
spectrum or other properties, generate plots.	
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Tip: Making Interesting Test Signals in Matlab	



Example: In-Phase and Quadrature Sinusoids	


>> fs=44100; 	

 	

% set up sampling frequency	


>> t=0:1/fs:5; 	

 	

% time vector (5 seconds long)	


>> x=[sin(2*pi*1000*t’) cos(2*pi*1000*t’)]; % left = sin, right = cos	


>> soundsc(x,fs);	

 	

% play sound through sound card	



Another example: white noise (in stereo)	


>> L=length(t);	


>> x=[randn(L,1) randn(L,1)];	


>> soundsc(x,fs);	

 	

% play sound through sound card	



These signals are all generated as double precision floats but can be cast to fixed 
point or integer formats if necessary.	



You can save your signals to .wav files with Matlab’s wavwrite function. These .wav 
files can be burned to CD and played with conventional stereo equipment.	
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Profiling Your Code and Making it More 
Efficient	



 How to estimate the execution time 
of your code.	



 How to use the optimizing compiler to 
produce more efficient code.	



 How data types and memory usage 
affect the efficiency of your code.	
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How to estimate code execution time 
when connected to the DSK	


1.  Start CCS with the C6713 DSK connected	



2.  Debug -> Connect (or alt+C)	


3.  Open project, build it, and load .out file to the DSK	


4.  Open the source file you wish to profile	


5.  Set two breakpoints for the start/end of the code range you wish to profile	


6.  Profile -> Clock -> Enable	


7.  Profile -> Clock -> View	


8.  Run to the first breakpoint	


9.  Reset the clock	


10.  Run to the second breakpoint	


11.  Clock will show raw number of execution cycles between breakpoints.	
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Tip: You can save your breakpoints, probe points, graphs, and watch windows with	



File -> Workspace -> Save Workspace As	





Another method for estimating code 
execution time (part 1 of 3)	



Repeat steps 1-4 previous method.	


5.  Clear any breakpoints in your 

code	


6.  Profile -> Setup	



7.  Click on Custom tab	



8.  Select “Cycles”	



9.  Click on clock (enable profiling)	
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Another method for estimating code 
execution time (part 2 of 3)	



10.  Select Ranges tab	


11.  Highlight code you want to profile 

and drag into ranges window (hint: 
you can drag whole functions into 
this window)	



12.  Repeat for other ranges if desired	
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Another method for estimating code 
execution time (part 3 of 3)	



13.  Profile -> Viewer	


14.  Run (let it run for a minute or more)	


15.  Halt	


16.  Observe profiling results in Profile Viewer window	
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Hint: edit the columns to see averages	





What does it mean?	



 Access count is the number of times that CCS 
profiled the function	


 Note that the function was probably called more 

than 49 times. CCS only timed it 49 times.	



  Inclusive average is the average number of 
cycles needed to run the function including any 
calls to subroutines	



  Exclusive average is the average number of 
cycles needed to run the function excluding any 
calls to subroutines	
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Optimizing Compiler	
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Profiling results after compiler optimization	



  In this example, we get a 3x-4x improvement with 
“Speed Most Critical” and “File (-o3)” optimization	



  Optimization gains can be much larger, e.g. 20x	
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Limitations of hardware profiling	



  Breakpoint/clock profiling method may not work with 
compiler-optimized code	



  Profile -> View method is known to be somewhat 
inaccurate when connected to real hardware (see 
“profiling limitations” in CCS help)	


  Accuracy is better when only one or two ranges are 

profiled	


  Best accuracy is achieved by running a simulator	
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Running CCS with a Cycle-Accurate Simulator	
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Limitations include not being able to use any DSK functionality (AIC23 codec, etc.) 



Other factors affecting code efficiency	


  Memory	



  C6713 has 256kB internal SRAM	


  Up to 64kB of this SRAM can be configured as shared L2 cache	


  DSK provides additional 16MB external RAM (SDRAM)	


  Code location (.text in linker command file)	



○  internal SRAM memory (fast)	


○  external SDRAM memory (typically 2-4x slower, depends on cache 

configuration)	


  Data location (.data in linker command file)	



○  internal SRAM memory (fast)	


○  external SDRAM memory (slower, depends on datatypes and cache 

configuration)	



  Data types	


  Slowest execution is double-precision floating point	


  Fastest execution is fixed point, e.g. short	
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TMS320C6713 DSK Memory Map	
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Linker Command File Example	
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MEMORY 
{ 
    vecs:        o = 00000000h  l = 00000200h 
    IRAM:        o = 00000200h  l = 0002FE00h                            
    CE0:    o = 80000000h  l = 01000000h  
} 

SECTIONS 
{ 
    .vectors   >       vecs 
    .cinit      >       IRAM 
    .text       >       IRAM 
    .stack      >       IRAM 
    .bss        >       IRAM 
    .const      >       IRAM 
    .data       >       IRAM 
    .far        >       IRAM 
    .switch     >       IRAM 
    .sysmem     >       IRAM 
    .tables     >       IRAM 
    .cio        >       IRAM 
}  

Addresses 00000000-0002FFFF correspond to the lowest 
192kB of internal memory (SRAM) and are labeled “IRAM”.	



External memory is mapped to address range 80000000 – 
80FFFFFF.  This is 16MB and is labeled “CEO”.	



Both code and data are placed in the C6713 internal SRAM in 
this example. Interrupt vectors are also in SRAM.	



Code goes here	



Data goes here	
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Some Things to Try	


  Try profiling parts of your FIR filter code from Day 1 without 

optimization. Try both profiling methods.	


  Rebuild your project under various optimization levels and try various 

settings from “size most critical” to “speed most critical”.	


  Compare profile results for no optimization and various levels of 

optimization.	


  Change the data types in your FIR filter code and rebuild (with and 

without optimization) to see the effect on performance.	


  Try moving the data and/or program to internal/external memory and 

profiling (you will need to modify the linker command file to do this)	


  Contest: Who can make the most efficient 8th order bandpass filter 

(that works)?	
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Assembly Language Programming on the 
TMS320C6713	



  To achieve the best possible performance, sometimes you 
have to take matters into your own hands...	



  Three options:	


1.  Linear assembly (.sa)	



○  Compromise between effort and efficiency	


○  Typically more efficient than C	


○  Assembler takes care of details like assigning “functional units”, 

registers, and parallelizing instructions	



2.  ASM statement in C code (.c)	


○  asm(“assembly code”)	



3.  C-callable assembly function (.asm)	


○  Full control of assigning functional units, registers, parallelization, 

and pipeline optimization	
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C-Callable Assembly Language Functions	


  Basic concepts:	



  Arguments are passed in via registers A4, B4, A6, B6, ... in 
that order. All registers are 32-bit.	



  Result returned in A4 also.	


  Return address of calling code (program counter) is in B3. 

Don’t overwrite B3!	


  Naming conventions:	


○  In C code: 	

label	


○  In ASM code: 	

_label   (note the leading underbar)	



  Accessing global variables in ASM:	


○  .ref _variablename	



  A function prototype must be included in your C code.	
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Skeleton C-Callable ASM Function	



; header comments	


; passed in parameters in registers A4, B4, A6, ... in that order	



	

 	

 	

.def _myfunc 	

 	

; allow calls from external	


ACONSTANT 	

.equ 100 	

    ; declare constants	


	

 	

 	

.ref _aglobalvariable 	

; refer to a global variable	



_myfunc:    NOP 	

 	

    	

    ; instructions go here	


	

 	

 	

B 	

 	

B3 	

; return (branch to addr B3)	


	

 	

 	

 	

 	

 	

; function output will be in A4	


	

 	

 	

NOP 	

 	

5 	

; pipeline flush	



	

 	

 	

.end	
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Example C-Callable Assembly Language Program���
int fircasmfunc(short x[], short h[], int N)	
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TMS320C67x Block Diagram	
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One instruction is 32���
bits. Program bus is 256 bits 
wide.	



 Can execute up to 8 
instructions per clock cycle 
(225MHz->4.4ns clock cycle).	



8 independent functional units:	


-  2 multipliers	


-  6 ALUs	



Code is efficient if all 8 
functional units are always busy.	



Register files each have 16 
general purpose registers, each 
32-bits wide (A0-A15, B0-B15). 	



Data paths are each 64 bits 
wide.	





C6713 Functional Units	


  Two data paths (A & B)	


  Data path A	



  Multiply operations (.M1)	


  Logical and arithmetic operations (.L1)	


  Branch, bit manipulation, and arithmetic operations (.S1)	


  Loading/storing and arithmetic operations (.D1)	



  Data path B	


  Multiply operations (.M2)	


  Logical and arithmetic operations (.L2)	


  Branch, bit manipulation, and arithmetic operations (.S2)	


  Loading/storing and arithmetic operations (.D2)	



  All data (not program) transfers go through .D1 and .D2	
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Fetch & Execute Packets	



  C6713 fetches 8 instructions at a time (256 bits)	


  Definition: “Fetch packet” is a group of 8 instructions fetched 

at once.	


  Coincidentally, C6713 has 8 functional units.	



  Ideally, all 8 instructions would be executed in parallel.	



  Often this isn’t possible, e.g.:	


  3 multiplies (only two .M functional units)	


  Results of instruction 3 needed by instruction 4 (must wait for 3 to 

complete)	
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Execute Packets	



  Definition: “Execute Packet” is a group of (8 or less) 
consecutive instructions in one fetch packet that can be 
executed in parallel.	



  C compiler provides a flag to indicate which 
instructions should be run in parallel.	



  You have to do this manually in Assembly using the 
double-pipe symbol “||”. See Chapter 3 of the Chassaing 
and Reay textbook.	
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1	

 2	

 3	

 4	

 5	

 6	

 7	

 8	



fetch packet	



execute packet 1	

 execute packet 2	

 execute packet 3	





C6713 Instruction Pipeline Overview	


All instructions flow through the following steps:	



1.  Fetch	


a)  PG: Program address Generate	



b)  PS: Program address Send	


c)  PW: Program address ready Wait	


d)  PR: Program fetch packet Receive	



2.  Decode	


a)  DP: Instruction DisPatch	



b)  DC: Instruction DeCode	



3.  Execute	


a)  10 phases labeled E1-E10	


b)  Fixed point processors have only 5 phases (E1-E5)	
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each step	


= 1 clock cycle	





Pipelining: Ideal Operation	
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Remarks:	


•  At clock cycle 11, the pipeline is “full”	


•  There are no holes (“bubbles”) in the pipeline in this example	





Pipelining: “Actual” Operation	
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Remarks:	


•  Fetch packet n has 3 execution packets	


•  All subsequent fetch packets have 1 execution packet	


•  Notice the holes/bubbles in the pipeline caused by lack of parallelization	





Execute Stage of C6713 Pipeline	



  C67x has 10 execute phases (floating point)	



  C62x/C64x have 5 execute phases (fixed point)	


  Different types of instructions require different numbers of 

these phases to complete their execution	


  Anywhere between 1 and all 10 phases	



  Most instruction tie up their functional unit for only one phase (E1)	
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Execution Stage Examples (1)	
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Functional unit free after E1 ���
(1 functional unit latency)	



results available after E1 (zero 
delay slots)	





Execution Stage Examples (2)	
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results available after	


E4 (3 delay slots)	



Functional unit free after E1	


(1 functional unit latency)	





Execution Stage Examples (3)	
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Results available after E10 (9 
delay slots)	



Functional unit free after E4	


(4 functional unit latency)	





Functional Latency & Delay Slots	



  Functional Latency: How long must we wait for the 
functional unit to be free?	



  Delay Slots: How long must we wait for the result?	


  General remarks:	



  Functional unit latency <= Delay slots	


  Strange results will occur in ASM code if you don’t pay 

attention to delay slots and functional unit latency	


  All problems can be resolved by “waiting” with NOPs	


  Efficient ASM code tries to keep functional units busy all of 

the time.	


  Efficient code is hard to write (and follow).	
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Lunch Break	
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Workshop resumes at 1:30pm…	





Some Things to Try	



  Try rewriting your FIR filter code as a C-
callable ASM function	


 Create a new ASM file	



 Call the ASM function from your main code	



  See Chassaing examples fircasm.pjt and 
fircasmfast.pjt for ideas	



  Profile your new FIR code and compare to the 
optimized compiler.	



Page 41 of 57	





Infinite Impulse Response (IIR) Filters	



  Advantages:	


  Can achieve a desired frequency response with less 

memory and computation than FIR filters	



  Disadvantages:	


  Can be unstable	


  Affected more by finite-precision math due to feedback	



  Input/output relationship:	
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IIR Filtering - Stability	


  Transfer function:	



  Note that the filter is stable only if all of its poles (roots of the 
denominator) have magnitude less than 1.	



  Easy to check in Matlab: max(abs(roots(a)))	


  Quantization of coefficients (a’s and b’s) will move the poles. A 

stable filter in infinite precision may not be stable after 
coefficient quantization.	



  Numerator of H(z) does not affect stability.	
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Creating IIR Filters	
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1.  Design filter	


  Type: low pass, high pass, band pass, band stop, ...	


  Filter order N	


  Desired frequency response	



2.  Decide on a realization structure 	


3.  Decide how coefficients will be quantized.	


4.  Compute quantized coefficients	


5.  Decide how everything else will be quantized (input 

samples, output samples, result of multiplies, result of 
additions)	



6.  Write code to realize filter	


7.  Test filter and compare to theoretical expectations	



Matlab 

CCS 



IIR Realization Structures	



  Many different IIR realization structures available (see 
options in Matlab’s fdatool)	


  Structures can have different memory and computational 

requirements	


  All structures give the same behavior when the math is 

infinite precision	


  Structures can have very different behavior when the math 

is finite precision	


○  Stability	


○  Accuracy with respect to the desired response	


○  Potential for overflow/underflow	
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Direct Form I	
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Notation: 1/z = one sample delay	





Direct Form II	
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Note that DFII has 
fewer delay elements 
(less memory) than 
DFI. It has been 
proven that DFII has 
minimum number of 
delay elements.	





Direct Form II: Second Order Sections	


  Transfer function H(z) is factored into H1(z)H2(z)…HK(z) where each 

factor Hk(z) has a quadratic denominator and numerator	



  Each quadratic factor is called a “Second Order Section” (SOS)	


  Each SOS is realized in DFII	



  The results from each SOS are then passed to the next SOS (cascade)	
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Direct Form II: Second Order Sections	



  Very popular realization structure	


  Low memory requirements (same as DFII)	


  Easy to check the stability of each SOS	



 Can write one DFII-SOS filter function and reuse it 
for any length filter	



  Tends to be less sensitive to finite precision math 
than DFI or DFII. Why?	


○ Dynamic range of coefficients in each SOS is smaller	


○ Coefficient quantization only affects local poles/zeros	
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Interpreting Matlab’s Header Files 
for IIR Filters in DFII-SOS	


  Each row of the NUM/DEN arrays in the header file contains 3 coefficients. 	


  The numerator (NUM) coefficients in each row, from left to right, are b[0], b[1], 

and b[2] in the usual notation. 	


  The denominator (DEN) coefficients in each row, from left to right, are a[0], a

[1], and a[2] in the usual notation. 	


  Note that a[0] is always equal to 1 and that we don't use it in our calculations 

(refer to the IIR input/output equation).	


  The rows are processed from top to bottom.  For each row:	



  compute u[n] using the denominator coefficients (and your scaled x[n] from the 
prior row) 	



  compute y[n] using the numerator coefficients. 	



  Since you know that your filter always have 3 coefficients in this case, you 
should be able to write one SOS function that does this efficiently.	
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Determining How Coefficient Quantization 
Will Affect Your Filter	
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set quantization	


parameters	





IIR Filtering Final Remarks	



  IIR filters are more sensitive to choice of realization 
structure and data types than FIR filters due to 
feedback	


  Memory requirements	


  Time required to compute filter output	


  Accuracy with respect to the desired response	


  Stability	


  Potential for overflow/underflow	



  Matlab’s fdatool can be useful for examining the 
tradeoffs before writing code	
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Some Things to Try	



  In fdatool, design an IIR filter with the following specs:	


  Bandstop	


  First passband 0-2500Hz, 0dB nominal gain, 0.5dB max deviation	


  First transition band 2500-3500Hz	


  Stop band 3500-10500Hz, -20dB minimum suppression	


  Second transition band 10500-12500Hz	


  Second passband 12500-22050Hz 0dB nominal gain, 0.5dB max deviation	


  Minimum filter order	



  Explore DFII with and without Second Order Sections	


  Try various coefficient quantizations including fixed point	


  Implement your “best” filter in CCS	


  Compare actual performance to the theoretical predictions	
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Other Interesting Applications of Real-
Time DSP	



  Fast Fourier Transform (FFT): Chapter 6	


  Example projects:	


○ DFT, FFT256C, FFTSinetable, FFTr2, FFTr4, 

FFTr4_sim, fastconvo, fastconvo_sim, graphicEQ	


○ Note that TI provides optimized FFT functions 

(search for cfftr2_dit, cfftr2_dif, cfftr4_dif)	



 Adaptive Filtering: Chapter 7	


  Example projects:	


○ Adaptc, adaptnoise, adaptnoise_2IN, adaptIDFIR, 

adaptIDFIRw, adaptIDIIR, adaptpredict, 
adaptpredict_2IN, 	
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Workshop Day 2 Summary	


What you learned today:	



  Some of the functions available in Matlab’s Link for Code Composer Studio	


  How to profile code size and execution times.	


  How data types and memory usage affect code execution times.	


  How to reduce code size and execution time with CCS’s optimizing compiler.	


  How assembly language can be integrated into your projects.	


  Basics of the TMS320C6713 architecture.	



○  Fetch packets, execute packets, pipelining	


○  Functional unit latency and delay slots	



  How to design and implement IIR filters on the C6713	


○  Realization structures	


○  Quantization considerations	



  Other applications for the C6713 DSK	


○  FFT	


○  Adaptive filtering	



Page 55 of 57	





Workshop Day 2 Reference Material	



  Matlab’s Link for Code Composer Studio help (>> doc ccslink) 	


  Chassaing textbook Chapters 3, 5-8	


  CCS Help system	


  SPRU509F.PDF CCS v3.1 IDE Getting Started Guide	


  C6713DSK.HLP C6713 DSK specific help material	


  SPRU198G.PDF TMS320C6000 Programmer’s Guide	


  SPRU189F.PDF TMS320C6000 CPU and Instruction Set 

Reference Guide	


  Matlab fdatool help (>> doc fdatool)	


  Other Matlab help (>> doc soundsc >> doc wavwrite)	
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Latest documentation available at ���
http://www.ti.com/sc/docs/psheets/man_dsp.htm	





Additional Exploration	



  Explore some of Chassaing’s FFT and adaptive filtering 
projects in the “myprojects” directory	



  Explore some of the reference literature (especially the 
Chassaing text and the CCS help system)	



  Try a lab assignment in the ECE4703 real-time DSP 
course: http://spinlab.wpi.edu/courses/ece4703	
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