

ECE4703: Implementation of Real-Time FIR Filters

D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department drb@ece.wpi.edu

Lecture 5: 31-Oct-2006

Signals Review

 Definition: A discrete time impulse function, d[n], is defined as: d[n] = 1 if n=0, d[n] = 0 otherwise.

• **Definition**: The "impulse response" of a linear time invariant filter is the output that occurs if the input is d[n].

Finite Impulse Response (FIR) Filtering – Basics

- Definition: A filter is FIR if there exists N<∞ such that the filter's impulse response h[n]=0 for all n>N.
- FIR filters are frequently used in real-time DSP systems
 - Simple to implement
 - Guaranteed to be stable
 - Can have nice properties like linear phase
- Input/output relationship

$$y[n] = \sum_{m=0}^{M-1} h[m]x[n-m]$$

x=input, *y*=output, *h*=impulse response (aka "filter coefficients")
 M=# of filter coefficients

Finite Impulse Response (FIR) Filtering – More Basics

Transfer function

$$H(z) = \sum_{m=0}^{M-1} z^{-m} h[m]$$

Frequency response

$$H(e^{j\omega}) = \sum_{m=0}^{M-1} e^{-j\omega m} h[m]$$

Implementation of FIR Filters

$$y[n] = \sum_{m=0}^{M-1} h[m]x[n-m]$$

- If everything is infinite precision, then there is nothing to worry about.
- Finite precision raises some issues:
 - Precision:
 - How is the input signal quantized?
 - How is the output signal quantized?
 - How are the filter coefficients quantized?
 - How are intermediate results (products, sums) quantized/stored?
 - "Realization Structure"
 - In what order should we do the calculations?

Actual performance can be significantly affected by these choices.

FIR filtering is usually less sensitive to these choices than IIR filtering for reasons we will see later.

Typical Procedure for Designing and Implementing FIR Filters

Design filter Matlab 1. Type: low pass, high pass, band pass, band stop, ... Filter order M **Desired frequency response** Decide on a realization structure 2. Decide how coefficients will be quantized. 3. Compute coefficients 4. CCS Decide how everything else will be quantized 5. (input samples, output samples, products, and sums) Write code to realize filter (based on step 2) 6. Test filter and compare to theoretical expectations 7.

Tools for Designing FIR Filters

Filter Realization Structures

- Filter realization structure specifies how past calculations are stored and the order in which calculations are performed.
- Lots of different structures available
 - Direct form I, direct form II, transposed forms, cascade, parallel, lattice, ...
 - Choice of structure affects computational complexity and how quantization errors are manifested through the filter

(picture from Matlab's help system)

File	-11ter Design & Analysis Tool - [ui Edit Analysis Targets View Wind	ntitled.fda]		-0
	ୁଆର୍ ନାଗାysis Taigets view <u>w</u> ind ଜିଲିଲିକିରି ଦେବ ଜିଛି		ᢦ # # ♪ _ @ ₪ 0	
	Current Filter Information	Filter Specifications		
	Structure: Direct-Form FIR Order: 50 Sections: 1 Stable: Yes Source: Designed Store Filter Filter Manager	Mag. (dB) 0 	→ ↓ Apass ↑ Fpass Fstop	Astop Fs/2 f (Hz)
	Response Type	Filter Order	Frequency Specifications	Magnitude Specifications
514	Highpass	O Specify order: 10		
50C	Bandpass	 Minimum order 	Fs:48000	Apass 1
F	Bandstop	Options	Fpass 9600	Astop 80
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Differentiator	Density Factor: 20	Fstop 12000	
	O IR Butterworth			

Determining How Coefficient Quantization Will Affect Your Filter

Make Coefficient File For CCS

Generate C Header													
File Edit	Design & Analysis	Analysi Targets	s Tool - View V	[untit Vindow	t led.fda * Help			_ Variable name:	s in C heade	r file			
D 🚅 🛛	i 4 D.	Genera	ate C hea	der]			Numerator:	В		Numerator length:	BL	
	urrent Filter	Code	Composer	Studio (r) IDE							<u>-</u>	
		XILINX	(Coefficie	ent (.COE	E) File		v						
		Genera	ate HDL .					Number of sect	ions:	NS			
									L.				
								_ Data type to us	e in export .				
									Export sug	ggested:	Double-precision floating point		
) Export as:		Signed 32-bit inter Fractional length:	jer 🔽 31	
									OK	Cancel	Help App	ly	

Here you can change the coefficient data type to match your desired quantization.

Example DP-FP Coefficient File

```
/*
* Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool
 * Generated by MATLAB(R) 7.0 and the
 * Generated on: 19-Aug-2005 13:04:09
 *
 */
/*
                                                              Note this new header
* Discrete-Time FIR Filter (real)
                                                              file needed for CCS to
 * _____
 * Filter Structure : Direct-Form FIR
                                                              understand Matlab's
* Filter Order
                    : 8
                                                              strange data types.
* Stable
                    : Yes
                    : Yes (Type 1)
 * Linear Phase
*/
                                                              Add this header file
/* General type conversion for MATLAB generated C-code */
                                                              to your project (in the
#include "tmwtvpes.h"
                                                              Matlab directory tree) or
/*
* Expected path to tmwtypes.h
                                                              edit the datatypes.
* C:\MATLAB7\extern\include\tmwtypes.h
*/
const int BL = 9
const real64 T B[9] = \{
   0.02588139692752, 0.08678803067191,
                                         0.1518399865268,
                                                            0.2017873498839,
    0.2205226777929,
                       0.2017873498839,
                                         0.1518399865268,
                                                           0.08678803067191,
   0.02588139692752
};
```


Page 13 of 17

FIR Filter Coefficient Quantization Considerations

- Key choice: floating point vs. fixed point
- Advantages of floating point math:
 - Less quantization error
 - Don't have to worry about keeping track of scaling factors
 - Less likelihood of overflow/underflow
 - Much easier to code
- Disadvantages of floating point math:
 - Executes slower than fixed point
 - Requires you to use a floating-point DSP (\$\$\$, power, heat,...)
- C code allows you to "cast" variables into any datatype

TMS320C6000 C/C++Data Types

			Range			
Туре	Size	Representation	Minimum	Maximum		
char, signed char	8 bits	ASCII	-128	127		
unsigned char	8 bits	ASCII	0	255		
short	16 bits	2s complement	-32768	32767		
unsigned short	16 bits	Binary	0	65535		
int, signed int	32 bits	2s complement	-2147483648	214783647		
unsigned int	32 bits	Binary	0	4294967295		
long, signed long	40 bits	2s complement	-549755813888	549755813887		
unsigned long	40 bits	Binary	0	1099511627775		
enum	32 bits	2s complement	-2147483648	214783647		
float	32 bits	IEEE 32-bit	1.175494e-38†	3.40282346e+38		
double	64 bits	IEEE 64-bit	2.22507385e-308†	1.79769313e+308		
long double	64 bits	IEEE 32-bit	2.22507385e-308†	1.79769313e+308		

Write Code to Realize FIR Filter

 Direct form I implies direct realization of the convolution equation (multiply and accumulate)

$$y[n] = \sum_{m=0}^{M-1} h[m]x[n-m]$$

- Some practical considerations:
 - Allocate buffer of length M for input samples.
 - Move input buffer pointer as new data comes in or move data?
- See Kehtarnavaz Lab 4 examples.

Verifying your real-time filter works correctly

- Method 1: Sinusoids (easy but labor intensive)
 - Generate input sinusoid at frequency f with amplitude a_{in}.
 - LTI filter output will also be at frequency f but with amplitude *a_{out}*.
 - Magnitude response of the filter is $20\log_{10}(a_{out}/a_{in})$
 - Compare actual magnitude response to the predicted response from Matlab
- Method 2: White noise (more complicated but less work)
 - Generate at least 10 seconds of a white noise input signal (matlab command randn)
 - Record filter output to a file
 - Use Matlab command pwelch to estimate power spectral density of the output

