## ECE4703 Final Exam

| Your Name: _ | SOLUTION          | _ Your box #: |
|--------------|-------------------|---------------|
|              | December 18, 2008 | ·             |

## Tips:

- Look over all of the questions before starting.
- Budget your time to allow yourself enough time to work on each question.
- Write neatly and show your work!
- This exam is worth a total of 200 points.
- Attach your "cheat sheet" to the exam when you hand it in.



1. 40 points. Suppose you write a frame-based DSP program that calculates a result on a buffer of N input samples. After profiling the code for various values of N, you determine that the number of cycles to compute the matrix inverse follows the trend

$$cycles = 100 + \frac{N^2}{2}.$$

If your sampling rate is  $f_s = 8000 \text{Hz}$ , your DSP clock rate is 225MHz, and all processing is performed on a frame-by-frame basis, how large can N be before your program will no longer run in real-time? Explain your answer.

$$Tealc(N) = \frac{Cycles}{225 \times 10^6} = \frac{100 + \frac{N^2}{2}}{225 \times 10^6}$$
 seconds

 $T_{\text{avail}}(N) = \frac{N}{8 \times 10^3}$  seconds (frame-based processing)

We want to know when Trale (N) = Tavail (N)

$$\frac{100 + \frac{N^2}{2}}{225 \times 10^6} = \frac{N}{8 \times 10^3}$$

$$8 \times 10^5 + (4 \times 10^3) N^2 - (225 \times 10^6) N = 0$$

divide through by 4×103

$$N^2 - (56.25 \times 10^3)N + 200 = 0$$

quadrate formula ... roots = -b ± Jb2-4ac 2a

roots = 
$$\frac{56.25 \times 10^3 \pm \sqrt{(56.25 \times 10^3)^2 800}}{2}$$

we have one root very close to zero and the more interesting root is at [N= 56250]

2. 50 points total. Suppose you wish to compute the 4-point FFT of the array

$$x = \{x[0], x[1], x[2], x[3]\}.$$

The output of the FFT is denoted as

$$X = FFT(x) = \{X[0], X[1], X[2], X[3]\}.$$

As shown in the figure below, you know that you need to call a 2-point FFT function twice in order to compute the 4-point FFT. Denote the output of the first 2-point FFT call as  $Y = \{Y[0], Y[1]\}$  and the output of the second 2-point FFT call as  $Z = \{Z[0], Z[1]\}$ .



Given

$$x[0] = a$$

$$x[1] = b$$

$$x[2] = c$$

$$x[3] = d$$

compute Y[0], Y[1], Z[0], Z[1], X[0], X[1], X[2], and X[3]. Show your work and explain your reasoning.

$$x[0]$$
  $= a+c \leftarrow x_{even}[0], x_{even}[2]$   
 $x[2]$   $= a-c \leftarrow x_{even}[1], x_{even}[3]$ 

se cond two-point FFT x[i] 
$$Z[o] = b+d \leq X_{odd}[o], X_{odd}[2]$$
  
x[3]  $Z[i] = b-d \leq X_{odd}[i], X_{odd}[3]$ 

$$X[o] = a+b+c+d$$
.  
 $X[i] = (a-c)-j(b-d)$   
 $X[2] = (a+c)-(b+d)$   
 $X[3] = (a-c)+j(b-d)$ 

$$\frac{X_{odd}[k]}{2 p o i n!} \\
FFT \\
Check using DFT:  $X[k] = \sum_{n=0}^{3} x[n] e^{-j\frac{2\pi n}{H}} \\
X[o] = a + b + c + d. \\
X[i] = a - j b - c + j d = (a - c) - j(b - d) \\
X[2] = a - b + c - d = (a + c) - (b + d) \\
X[3] = a + j b - c - j d = (a - c) + j(b - d)$$$

3. 60 points total. Consider the system identification adaptive filtering system shown below.



For the following questions, assume that

- the mean squared value of the input noise x[n] is one, i.e.  $E[x^2[n]] = 1$ ,
- the unknown filter coefficients are h = [0.1, 0.5, 0.3],
- the LMS adaptive filter b coefficients are initialized to zero prior to adaptation, and
- the LMS step-size is small enough to allow for convergence of the algorithm to the minimum mean squared error (MMSE) solution.
- (a) 20 points. Suppose that D=0 (no delay) and that b has three coefficients. What will b be after convergence of the LMS algorithm? What will the MMSE be after convergence? b=[0.1,0.5,0.3] and MMSE  $\rightarrow$  0
- (b) 20 points. Now suppose D = 0 (no delay) and that b has two coefficients. What will b be after convergence of the LMS algorithm? What will the MMSE be after convergence?

  after convergence, b = [0.1, 0.5]. This is the best that b can approximate b. The match isn't perfect, however, since  $e[n] = d[n] y[n] = (0.1 \times [n] + 0.5 \times [n-2] + 0.3 \times [n-3]) (0.1 \times [n] + 0.5 \times [n-2])$ The MMSE in this case is then  $E[e^{2}[n]] = 0.09 E[x^{2}[n]] = 0.09$ .
- (c) 20 points. For the case when b has two coefficients, find the value of D that leads to the lowest possible MMSE. For this value of D, what will b be after convergence of the LMS algorithm? For this value of D, what will the MMSE be after convergence?

  If we let D=1, then b=[0.5, 0.3] after convergence

  The MMSE in This case can be calculated from the error e[n] = d[n] y[n] = 0.1 x[n]

  MMSE = 0.01 (an improment of 9x).

- 4. 50 points total. Suppose your DSP is running the assembly code given on the last page of this exam (taken from the Kehtarnavaz examples).
- (a) 10 pts. Draw a box around the instruction(s) in the third fetch packet. Label it FP3.
- (b) 10 pts. Draw a box around the instruction(s) in the third execute packet. Label it EP3.
- (c) 10 points. Suppose the SHR instruction on line 17 is currently in pipeline stage E1. Put a pound sign (#) next to the instruction(s) currently in pipeline stage DP.
  - (d) 10 points. Including the 5 NOP cycles at the end of the listing, how many cycles does this code require to execute?

(e) 10 points. Suppose the first LDW instruction results in A5=11, the second LDW instruction results in A5=12, and the third LDW instruction results in A5=13. Similarly, suppose the first LDH instruction results in B5=1, the second LDH instruction results in B5=2, and the third LDH instruction results in B5=3 (all values are decimal). Compute the results of the first and second MPY instructions (lines 13 and 14). Explain your answer.

```
-8
                                        *****************
        -7
                     This code is written by N. Kehtarnavaz and N. Kim as part of the
        -6
                     textbook "Real-Time Digital Signal Processing Based on TMS320C6000".
        -5
        -4
        -3
                      .global _iir
                                               ; Simple iir filter implementation
        -2
                              ".iir"
                      .sect
        -1
        0
             _iir:
        1
                              ZERO
                                       .81
                                               A10
                                                                ; BSUM
        2
                     \Pi
                              ZERO
                                       .52
                                               B10
                                                                ; ASUM
 EPI
                     \Pi
                              LDW
                                       .D1
                                               *A4++, A5
                                                                ; Load input sample (A5=11)
                                                                                                        FPI
                     \Pi
                              LDH
                                       .D2
                                               *B4++,B5
                                                                ; Load b coefficient (B5=1)
                              LDW.
                                       .D1
                                               *A4++,A5
                                                                ; Load input sample (A5=12)
 EP2
                     11
                              LDH
                                       .D2
                                               *B4++,B5
                                                                  Load b coefficient (B5=2)
                              LDW
                                                                ; Load input sample (A5=13)
                                       .D1
                                               *A4++,A5
 EP3
        8
                     \Pi
                              LDH
                                       .D2
                                               *B4++,B5
                                                                ; Load b coefficient (B5=3)
        9
                              LDW
                                       .D1
                                               *++A6,A7
                                                                ; Load output sample
 EP4
        10
                     \Pi
                              LDH
                                       .D2
                                               *++B6,B7
                                                                : Load a coefficient
        11
                              LDW
                                       .D1
                                               *++A6,A7
                                                                ; Load output sample
 EPS
                                                                                                       FP2
        12
                     \Pi
                              LDH
                                       .D2
                                               *++B6,B7
                                                                ; Load a coefficient
       13
                              MPY
                                       .M1x
                                               A5, B5, A8
                                                                ; b * input
        14
                              MPY
                                       M1x
                                               A5, B5, A8
                                                                ; b * input
       15
                              SHR
                                       .51
                                               A8, 15, A9
                                                                ; Shift right
        16
                     \Pi
                              MPY
                                       .M1x
                                               A5, B5, A8
                                                                ; b * input
        17
                              SHR
                                       .51
                                                                ; Shift right
                                               A8, 15, A9
EI -
       18
                     11
                              ADD
                                      .L1
                                               A9, A10, A10
                                                                ; Add
                                                                                                      FP3
                     11
                              MPY
                                       .M2x
                                               A7, B7, B8
                                                                ; a * output
        20
                              SHR
                                      .S1
                                               A8, 15, A9
                                                                ; Shift right
DC->
                     П
                              ADD
                                       .L1
                                               A9, A10, A10
                                                                ; Add
        22
                     \Pi
                              MPY
                                       .M2x
                                               A7, B7, B8
                                                                ; a * output
        23
                                               A9, A10, A10
                           # ADD
                                       .LI
                                                                ; Add
                           SHR
                                       .S2
                                               B8, 15, B9
                                                                : Shift right
        25
                              SHR
                                       .S2
                                               B8, 15, B9
                                                                ; Shift right
        26
                     11
                              ADD
                                       <u>.L2</u>
                                               B9. B10. B10
                                                                ; Add
       27
                              ADD
                                       .L2
                                               B9, B10, B10
                                                                ; Add
       28
                              SUB
                                      .L1
                                               A10, B10, A4
                                                                ; BSUM - ASUM
       29
                              В
                                       . Š2
       30
                              NOP
```