ECE4703: Lecture 8

D. Richard Brown III

Worcester Polytechnic Institute

30-Nov-2009

FFT Complexity Analysis: N = 1

DFT equation:

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\pi k n/N} \quad \text{for } k = 0, 1, \dots, N-1$$

When N = 1, the FFT and the DFT do the same computations and we simply have

$$X[0] = x[0]e^0$$

No multiplies or additions. Hence a one-point DFT/FFT has no MACs.

FFT Complexity Analysis: N = 2

Two-point FFT computed using radix-2 decimation in time:

$$X[0] = X_{even}[0] + e^{-j2\pi \cdot 0/2} X_{odd}[0] = X_{even}[0] + X_{odd}[0]$$

$$X[1] = X_{even}[1] + e^{-j2\pi \cdot 1/2} X_{odd}[1] = X_{even}[1] - X_{odd}[1]$$

Note that $X_{even}[k]$ and $X_{odd}[k]$ for k = 0, 1 are just one-point FFTs.

Hence,

$$\begin{array}{rcl} X[0] & = & x[0] + x[1] \\ X[1] & = & x[0] - x[1] \end{array}$$

How many MACs in the R2-DIT two-point FFT?

FFT Complexity Analysis: N = 4 (part 1)

Four-point FFT computed using radix-2 decimation in time:

$$\begin{aligned} X[0] &= X_{even}[0] + e^{-j2\pi \cdot 0/4} X_{odd}[0] = X_{even}[0] + X_{odd}[0] \\ X[1] &= X_{even}[1] + e^{-j2\pi \cdot 1/4} X_{odd}[1] = X_{even}[1] - jX_{odd}[1] \\ X[2] &= X_{even}[2] + e^{-j2\pi \cdot 2/4} X_{odd}[2] = X_{even}[2] - X_{odd}[2] \\ X[3] &= X_{even}[3] + e^{-j2\pi \cdot 3/4} X_{odd}[3] = X_{even}[3] + jX_{odd}[3] \end{aligned}$$

Remarks:

- ▶ $X_{even}[k]$ and $X_{odd}[k]$ for k = 0, 1, 3, 4 are all two-point FFTs.
- ▶ Recall that an N-point DFT/FFT is periodic in the sense that X[k] = X[k+N].
- ▶ These facts imply that $X_{even}[2] = X_{even}[0]$, $X_{even}[3] = X_{even}[1]$, $X_{odd}[2] = X_{odd}[0]$, and $X_{odd}[3] = X_{odd}[1]$.
- ▶ Hence, we only need to compute four two-point FFTs: X_{even}[0], X_{even}[1], X_{odd}[0], and X_{odd}[1].

FFT Complexity Analysis: N = 4 (part 2)

Four-point FFT computed using radix-2 decimation in time:

$$\begin{aligned} X[0] &= X_{even}[0] + e^{-j2\pi \cdot 0/4} X_{odd}[0] = X_{even}[0] + X_{odd}[0] \\ X[1] &= X_{even}[1] + e^{-j2\pi \cdot 1/4} X_{odd}[1] = X_{even}[1] - jX_{odd}[1] \\ X[2] &= X_{even}[2] + e^{-j2\pi \cdot 2/4} X_{odd}[2] = X_{even}[2] - X_{odd}[2] \\ X[3] &= X_{even}[3] + e^{-j2\pi \cdot 3/4} X_{odd}[3] = X_{even}[3] + jX_{odd}[3] \end{aligned}$$

Computation of $X_{even}[0]$ and $X_{even}[1]$ requires how many MACs? 2

Computation of $X_{odd}[0]$ and $X_{odd}[1]$ requires how many MACs? 2

How many more MACs are required to assemble the two two-point FFTs into a four-point FFT? 4

Hence, the total MACs needed to compute a four-point FFT is 8.

FFT Complexity Analysis: N = 8

Eight-point FFT computed using radix-2 decimation in time follows the same accounting:

$$X[k] = X_{even}[k] + e^{-j2\pi \cdot k/8} X_{odd}[k]$$
 for $k = 0, 1, \dots, 8$

Computation of $X_{even}[k]$ for k = 0, 1, 2, 3 requires how many MACs? 8

Computation of $X_{odd}[k]$ for k = 0, 1, 2, 3 requires how many MACs? 8

How many more MACs are required to assemble the two four-point FFTs into an eight-point FFT? 8 $\,$

Hence, the total MACs needed to compute an eight-point FFT is 24.

FFT Complexity Analysis: General N

Operation	MACs
Computation of N one-point FFTs	0
Assembling $\frac{N}{2}$ two-point FFTs from N one-point FFTs	Ν
Assembling $\frac{N}{4}$ four-point FFTs from $\frac{N}{2}$ two-point FFTs	Ν
Assembling $\frac{N}{8}$ eight-point FFTs from $\frac{N}{4}$ four-point FFTs	Ν
	:
Assembling one N-point FFT from two $\frac{N}{2}$ -point FFTs	Ν

Hence, the total MACs needed to compute an N-point FFT is _____.

Worcester Polytechnic Institute