ECE4703 Final Exam

Your Name:	SOLUTION	Your box #:
	December 16	, 2010

Tips:

- Look over all of the questions before starting.
- Budget your time to allow yourself enough time to work on each question.
- Write neatly and show your work!
- This exam is worth a total of 200 points.
- Attach your "cheat sheet" to the exam when you hand it in.

- 1. 40 points. Suppose you write a sorting function that takes an array x of N unsorted floating point values and copies the elements to another array y sorted in ascending order. Your sorting algorithm works as follows:
 - (a) Set n=0.
 - (b) Search through the whole array $x[0], \ldots, x[N-1]$ to find the minimum element. Denote the index of this minimum element as m where $m \in \{0, \ldots, N-1\}$.
 - (c) Copy x[m] to y[n]
 - (d) Set $x[m] = \infty$.
 - (e) Increment n.
 - (f) If n < N, branch to step (b), otherwise end.

Note that there are no multiplies or explicit additions/subtractions in this algorithm. What is a reasonable definition for an *operation* in this case? Using this definition, determine the asymptotic complexity of this sorting algorithm.

A reasonable definition for "operation" in this case is comparisons.

In step (b), we need to perform N-1 remparisons to find the minimum element of x.

In step (f), we need to perform one more comparison.

Steps (b) - (f) are repeated N times.

Hence, there are a total of N^2 comparisons required by this sort algorithm and the asymptotic complexity is $\Theta(N^2)$.

2. 40 points. Suppose you have an array x that contains four complex numbers and you wish to perform a 8-point FFT on this array by padding it with four zeros and then performing the 8-point FFT. In other words, you form a new 8-element complex array xpad such that

$$xpad[k] = \begin{cases} x[k] & k \in \{0, 1, 2, 3\} \\ 0 & k \in \{4, 5, 6, 7\} \end{cases}$$

and perform the 8-point FFT on the xpad array. Recall that the number of multiply+accumulate operations in a normal 8-point FFT is $8\log_2(8) = 24$. But, in this case, four of the inputs to the FFT are zero. If we do not count "multiply by zero" or "add zero" as operations, how many operations does the 8-point FFT require in this case?

Hint: Recall that the N-point FFT is computed by dividing the FFT into an N/2-point FFT of the even part and an N/2-point FFT of the odd part. This "divide-and-conquer" approach is repeated until N=2. Determine the number of operations in the 2-point FFT and then work your way back to the 8-point FFT.

$$\times pad = \{x[0], x[1], x[2], x[3], 0, 0, 0, 0\}$$

$$XPAD = FFT_8 \{xpad\} \quad and \quad XPAD[k] = XPAD_{even}[k] + e^{-j^{2\pi k}/8} XPAD_{add}[k]$$
to perfor the FFT8, we split it as follows:

3. 60 points total. Consider the system identification adaptive filtering system shown below.

For the following questions, assume that

- $\bullet \ \mathrm{E}\left\{x^2[n]\right\} = \sigma_x^2,$
- the unknown system filter coefficients are h = [1, 2, 1],
- the LMS adaptive filter b coefficients are initialized to zero prior to adaptation, and
- the LMS step-size is small enough to allow for convergence of the algorithm to the minimum mean squared error (MMSE) solution.
- (a) 20 points. Suppose that the "unexpected" FIR filter g = 1 and the LMS adaptive FIR filter b has three coefficients. What will b be after convergence of the LMS algorithm? What will the MSE be after convergence?

In this case, the "unexpected" FIR filter g has no effect. The LMS adapted filter will seek to minimize the MSE by converging to b = [1,2,1], exactly matching h = [1,2,1] and rausing the MSE to become zero after convergence.

(b) 20 points. Now suppose that the "unexpected" FIR filter g=1 and the LMS adaptive FIR filter b has two coefficients. What will b be after convergence of the LMS algorithm? What will the MSE be after convergence?

Again, the "unexpected" FIR-filter has no effect. In This case, the best the LMS adaptive filter can do is match the flist two coefficients of h, i.e. b = [1,2]. Then e[n] = d[n] - y[n] = (x[n] + 2x[n-i] + x[n-2]) - (x[n] + 2x[n-i]) = x[n-2] and $E\{e^2[n]\} = E\{x^2[n-2]\} = \sigma_x^2$. Hence the MSE after convergence will be σ_x^2 .

(c) 20 points. Now suppose that the "unexpected" FIR filter g = [1, 1] and the LMS adaptive FIR filter b has two coefficients. What will b be after convergence of the LMS algorithm? What will the MSE be after convergence?

In this case, y = x * g * b Note that if b = [1,1], g * b = [1,2,1] = h. In other words, it is possible for the LMS adaptive filter to drive the MSE to Zero by converging to b = [1,1]. The "overall" filter f = g * b = [1,2,1] = h, hence y[n] = d[n] and e[n] = 0 $\forall n$. Hence the MSE will be Zero after convergence.

- 4. 60 points total. Suppose your DSP is running the assembly code given on the last page of this exam (this code is adapted from the TI optimized FFT code that you used in Lab 5).
 - √(a) 10 pts. Draw a box around the instruction(s) in the first fetch packet. Label it FP1.
 - (b) 10 pts. Draw a box around the instruction(s) in the fifth execute packet. Label it EP5.
 - √(c) 10 points. Suppose the LDDW instructions on lines are currently in pipeline stage
 E4. Put a pound sign (#) next to the instruction(s) currently in pipeline stage E1.
 - √(d) 10 points. Put stars (*) next to the instruction(s) in the execute packet that runs immediately after the results from the LDDW commands on lines the packet that runs immediately after the results from the LDDW commands on lines to the instruction(s) in the execute packet that runs immediately after the results from the LDDW commands on lines to the instruction(s) in the execute packet that runs immediately after the results from the LDDW commands on lines to the instruction (s) in the execute packet that runs immediately after the results from the LDDW commands on lines to the instruction (s) in the execute packet that runs immediately after the results from the LDDW commands on lines to the instruction (s) in the execute packet that runs immediately after the results from the LDDW commands on lines to the instruction (s) in the execute packet that runs immediately after the results from the LDDW commands on lines to the instruction (s) in the execute packet that runs immediately after the results from the LDDW commands on lines to the instruction (s) in the execute packet that runs is the instruction (s) in the execute packet that runs is the execute packe
 - (e) 10 points. What is the minimum number of NOPs you should have in line 51 if you want the results of the MPYSPs on lines 48-49 to be valid before the ADDSP on line 52?

3 NOPs are necessary because MPYSP has 3 delay slots

Using your result from part (e).

(f) 10 points. How many total cycles does it take for this function to execute? Count all cycles up to, but not including, the branch on line 53. Hint: Conditional instructions take a cycle to execute even if the condition evaluates as false.

20 cycles.

```
myfunc:
                        ADD
                                 .D1
                                         A4,A6,A3
                                                           ; f xx2 = x + n*4
               11
                        MV
                                 .L2
                                         B4,B12
                                                             f wsave = w
               11
                        SHRU
                                 .S2X
                                         A6,1,B4
                                                             f nsave = n >> 1
                                                                                     ←FP1
EPI
               11
                        MV
                                 .L1X
                                         B4,A5
                                                             f w1 = w
                                                                                       (8 instructions)
               11
                                 .S1
                                         1,A14
                                                            f onea = 1
                        MVK
           5
                        MV
                                 .S2X
                                         A3,B8
                                                             f xx1 = xx2
 EPZ
           6
               11
                                 .L2
                                         B4,B0
                                                             f i = nsave
                        MΥ
                                                             f k1 = n << 2
               11
                        SHL.
                                 <u>$1</u>
                                         A6,2,A10
          8
                                                           ; p @ t2_1:t2_0 =
                        LDDW
                                 .D2
                                         *B8++,B7:B6
          9
               11
                        LDDW
                                 .D1
                                         *A5++, A7: A6
                                                           ; p @ s:c = *w1
          10
               11
                        MPY
                                 .M2
                                         BO,1,B13
                                                           ; f ireset = i*1
  EP3
                                                           ; f bk = n+1
          11
               Ш
                        ADD
                                 .L2X
                                         A6,1,B9
                                 .52
                                                           ; f xx3 = xx1
          12
               \Pi
                        MV
                                         B8,B5
                                                           ; f xx4 = x
                                 .L1
          1\bar{3}
                        MV
                                         A4,A11
  EP4
                                                             f k = n * 4
          14
                        SHL
                                 .S2X
                                         A6,2,B1
          15
                        MV
                                 .L1X
                                         B9, A0
                                                           ; f bk1 = bk
                                                                                    LEP5
                                                           ; p if (i) i = i-1
               ! !
                        SUB
                                 .L2
                                         BO,1,BO
          16
  EPS
                                                           ; f xx2 = x
               11
                        MV
                                 .S1
                                         A4.A3
          17
                                 .S2
                                                           ; f oneb = 1
                                         1,B14
          18
                        MVK
                                                           ; p if (!i) xx1 = xx1 + k
          19
                        ADD
                                 .L2
                                         B8,B1,B8
  EP6
               !!
                        MV
                                 .S2
                                         B13,B2
                                                           ; f t3_ctr = ireset
          20
                                                           ; f st_ctr = ireset
                        MV
                                 .L1X
                                         B13,A1
          21
               11
                                                           ; p @@ t2_1:t2_0 = *xx1++
                                                                                           pipeline E4
                                 .D2
                                         *B8++,B7:B6
          22
                        LDDW
                                                           ; p @@ if (!i) s:c = *w1
          23
                        LDDW
                                 .D1
                                         *A5++, A7: A6
  EP7
               \Pi
                                                           ; p if (!i) i = ireset*1
               H
                        MPY
                                 .M2
                                         B14,B13,B0
          24
                                 .M1X
                                         A6,B6,A13
                                                           ; p rtemp2 = c*t2_0
          25
                        MPYSP
                                                                                           pipeline E3
 EP8
                                                           ; p itemp2 = c*t2_1
                                         A6,B7,B11
                        MPYSP
                                 .M2X
                                                           ; p if (i) i = i-1
                                                                                           Pipeline EZ
                  [B0]
                        SUB
                                 .S2
                                         BO,1,BO
          27
  EP9
                                                           : f 1 = nsave - 1
                                         B4,1,A2
                        SUB
                                 .L1X
                                                           ; p rtemp3 = s*t2_1
                     MPYSP
                                 .M1X
                                         A7,B7,A15
          29
                                                                                            pipeline El
                      #MPYSP
                                 .M2X
                                         A7,B6,B3
                                                           ; p itemp3 = s*t2_0
          30
  EPIO
                                                             p if (!i) xx1 = xx1 + k
                      #ADD
                                 .L2
                                         B8,B1,B8
                                                           ; p @@@ t2_1:t2_0 = *xx1++
                                 .D2
                                         *B8++,B7:B6
                        LDDW
          32
                                                           ; p 000 if (!i) s:c = *w1
                                          *A5++, A7: A6
          33
               \Pi
                        LDDW
                                 .D1
  EPII
                                                            p if (!i) i = ireset*1
                        MPY
                                 . M2
                                         B14,B13,B0
          34
               11
                     MPYSP
                                 .M1X
                                         A6,B6,A13
                                                             p rtemp2 = c*t2_0
          35
  EP12
                                                           ; p itemp2 = c*t2_1
                     MPYSP
                                 .M2X
                                         A6,B7,B11
          36
                                                           ; p if (i) i = i-1
                                          BO,1,BO
                  [B0]
                                 .S2
  EP13
          37
                        SUB
                                                             p @ t3_1:t3_0 = *xx2++
          38
                        LDDW
                                 .D1
                                          *A3++, A9: A8
                                                           ; p rtemp3 = s*t2_1
                        MPYSP
                                 .M1X
                                          A7,B7,A15
          39
               П
                                          A7,B6,B3
                                                           ; p itemp3 = s*t2_0
                        MPYSP
                                 .M2X
               П
          40
 EP14
                                                           ; p if (!i) xx1 = xx1 + k
                                          B8,B1,B8
                        ADD
                                 .D2
          41
                11
                                                           ; p rtemp1 = rtemp2 + rtemp3
                        ADDSP
                                 .L1
                                          A13,A15,A12
          42
                11
                                                           ; p itemp1 = itemp2 - itemp3
          43
                \Pi
                        SUBSP
                                 .L2
                                          B11,B3,B10
                                                           ; p @@@@ t2_1:t2_0 = *xx1++
                        LDDW
                                 .D2
                                          *B8++,B7:B6
          44
                                                           ; p @@@@ if (!i) s:c = *w1
                                          *A5++, A7: A6
                        LDDW
                                 .D1
                H
          45
 EP15
                                                           ; p if (!i) i = ireset*1
                                          B14,B13,B0
                        MPY
                                 . M2
          46
                11
                                                           ; p if (t3_ctr) t3_ctr -= 1
                ||[B2]
                                          B2,1,B2
                        SUB
                                 .S2
          47
                                                           ; p rtemp2 = c*t2_0
                                          A6,B6,A13
          48
                        MPYSP
                                 .M1X
                                                           ; p itemp2 = c*t2_1
                        MPYSP
                                 .M2X
                                          A6.B7.B11
          49
                \Pi
  EP16
                                                           ; p if (!t3_ctr) xx2 = xx2 + k1
                                          A3,A10,A3
          50
                11
                        ADD
                                 .S1
                                 <del>199</del>4 3
                        NOP
         51
EP17-19
                                 .M1X
                                          A13,B11,A4
                        ADDSP
          52
 EP 20
                                          B3
          53
                        В
                                 .S2
                                          5
          54
                        NOP
```