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Some Challenges of Real-Time DSP

Analog to digital conversion
Are we sampling fast enough?

How much quantization noise have we added to the original analog
signal?

Are we clipping!?

ADC non-idealities like non-linear response, etc.

Digital to analog conversion
How much distortion is added by the reconstruction filter?

DAC non-idealities like non-linear response, etc.

DSP

Are we running in real time?
Do we have enough memory?

Distortion caused by digital processing, e.g. overflow, underflow, fixed
point effects, etc.
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Analog To Digital Conversion

apalog s ADC : d.igital
signal signal

An ADC performs two functions:

sampling: convert a continuous-time (CT) signal
to a discrete-time (DT) signal

k| = 24(k - Ts +7)
quantization: convert a continuous-valued (CV)
signal to a discrete-valued (DV) signal

¢|k| = quant{z|k|, N}
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ADC Sampling (CT =>» DT)

Recall Nyquist’ s sampling theorem (ECE2312): A
bandlimited CT signal with maximum frequency B Hz can be
uniquely recovered from its samples only if the sampling
frequency f. >= 2B samples per second

Reconstruction formula (DT =» CT, performed by DAC):

x(t) = x (t) if f{, >= 2B (see ECE2312 textbook for proof).
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DAC Sinc Reconstruction
(Kehtarnavaz Figure 2-17)

Sinc Interpolation
Samples

Interpotated curve
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Sampling Example

o(t) =sin(27 - t) - cos(2m - 10 - 1)

What is the minimum sampling frequency to
allow for exact recovery of the original
analog signal from its samples?



Sampling Example: No Aliasing (f.=50)




Sampling Example: Aliasing (f.=10)
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Aliasing Audio Examples

Please see file agc.m on course website
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ADC Quantization (CV = DV)

An N-bit quantizer converts a continuous valued
(CV) signal to a discrete valued (DV) signal with 2N
discrete values

Remarks:

Unlike sampling, quantization always causes irreversible
distortion of the signal

Two types of distortion:

o Saturation/clipping

o Quantization error

In normal cases with no clipping, increasing the number of

bits (N) typically decreases the distortion caused by
quantization



3-bit ldeal Quantization

discrete-valued output

saturation/clipping

continuous-valued input

saturation/clipping




3-bit ldeal Quantization
(Kehtarnavaz Figure 2-15)

A/D Input/Output




Quantizer + Reconstruction Example
(N=4,{.=50)




Signal to Noise Ratio of Quantization

SNRmax =6.02N + 1.76

-40 -30 -20 -10 0 10
Am(dB)

Figure 2-17: Signal-to-noise ratio of an ideal 8-bit A/D converter.

Bottom line: Best SNR is achieved when analog input signal amplitude
is as large as possible without saturation/clipping.



Quantization in Matlab

Matlab variables are typically 64-bit double-precision
floating point.We often refer to this as “infinite precision’.

One way to quantize vectors Matlab:

First check for saturation:

vref = 1;

il = find(x>vref*(2~(N-1)-1)/(2~(N-1)));
x(il) = vref*(2~(N-1)-1)/(2~(N-1));

i2 = find(x<-vref);

x(i2) = -vref;

Then perform quantization:
xq = round((x/vref)*2~(N-1))*vref/(2~(N-1));

You can also compute quantization error
equant = x-Xxq;



Signals Review: Impulse Response

® Definition: A discrete time impulse function, d[n], is
defined as: d[n] = | if n=0, d[n] = 0 otherwise.

din]
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® Definition:The “impulse response” of a linear time
invariant filter is the output that occurs if the input is d[n].

h[n]

din]
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Finite Impulse Response (FIR)
Filtering — Basics

Definition: A filter is FIR if there exists N<oo such that the
filter’ s impulse response h[n]=0 for all n>N.

FIR filters are frequently used in real-time DSP systems
Simple to implement
Guaranteed to be stable
Can have nice properties like linear phase

Input/output relationship

M-1

yln] = Z hlm]zn — m]

m=0

X = input, Y = output, h = impulse response (aka “filter coefficients”)
M = # of filter coefficients
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Finite Impulse Response (FIR)
Filtering — More Basics

Transfer function (useful for what?)

Frequency response (useful for what?)
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Implementation of FIR Filters

M-1

l/[ll] == Z h['ﬂl]l-' [71. — 772-]

m=I)

@ If everything is “infinite precision”, then there isn’ t
too much to worry about (except real-time
considerations)

® Finite precision raises some issues:

* Precision:
o How is the input signal quantized?
o How is the output signal quantized?
o How are the filter coefficients quantized? FIR filtering is usually

o How are intermediate results (products, sums) less sensitive to these

quantized/stored? choices than IIR
filtering because there is no

11 o . ”
[ ]
Realization Structure feedback.
o In what order should we do the calculations?

Actual performance can
be significantly affected
by these choices.
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Typical Procedure for Designing and
Implementing FIR Filters

Design filter Matlab
e Type:low pass, high pass, band pass, band stop, ...
e Filter order M
e Desired frequency response

Decide on a realization structure
Decide how coefficients will be quantized.
Compute coefficients

Decide how everything else will be quantized (input €CS
samples, output samples, products, and sums)

Write code to realize filter (based on step 2)
Test filter and compare to theoretical expectations




Tools for Designing FIR Filters

B Filter Design & Analysis Tool - [untitled.fda]

7,

Launch
MATLAE 7.0

>> fdatool

R
Dypeny

File Edit

Analysis Targets View Window Help
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Fitter Specifications
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Current Filter Information

Structure:  Direct-Form FIR
Order: 50

Sections: 1

Stable: Yes

Source: Designed

Fiter Manager ...

Response Type

() |Lowpass |
O Highpass I

() Bandpass
() Bandstop

() | Diferertiator - |

Design Method

OIR | Butterworth ~ |
(3)FIR | Equiripple v I

Fiter Order

() Specify order:
() Minimum order

Options
Density Factor:

20

Fpass Fslop

Frequency Specifications

Fs: 48000

Fpass 9600

Fstop | 12000

Fsf2 f(Hz)

Magnitude Specifications
Apass

Astop 80




$O$CES T, 73

Filter Realization Structures

Filter realization structure specifies how past calculations are stored and the
order in which calculations are performed.

Lots of different structures available
Direct form |, direct form Il, transposed forms, cascade, parallel, lattice, ...

Choice of structure affects computational complexity and how quantization errors
are manifested through the filter

: ——

Filter Design & Analysis Tool - [untitled.fda]

B Convert Structure =]

File Edit Analysis Targets View Window Help Convert To

D ESR|> > (2R OPX 11

Current Fitter Information Fiter Specificatid l

Structure:  Direct-Form FIR
Order: 50
Sections:

right click e
in thIS pane Source:  Desighed

State-Space

Direct-Form FIR

Direct-Form FIR Transposed
Direct-Form Symmetric FIR

Convert Structure ...

Focus on “Direct form” for now.
We' Il discuss other options when

Show Fiter Structure : we look at IIR filtering later.
What's This?
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Direct Form | Filter Structure
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(picture from Matlab’ s help system)
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B Filter Design & Analysis Tool - [untitled.fda]

Compute FIR Filter Coefficients

__ Current Filter Information

Structure:
Order: 50
Sections: 1
Stahle:
Source:

Yes
Designed

Direct-Form FIR

[ Store Fitter ...

[ Filter Manager ...

File Edit Analysis Targets View Window Help

DeESl »~ 2POX 0K

_Fitter Specifications

|DINRd & < [T~ Bk @R W

Hhag. (dB)

T

Fpass Fstop

Fs2  f(Hz)

— Response Type

@ } Lowpass

(€]

O jnghpass
() Bandpass
() Bandstop

I=Tw

0

[}
]

5|

O | Ditferentiator

‘ui |

| Design Method

5

B

O IR \ Butterworth

rGEil

AR

(&) FIR ‘ Equiripple

B

__ Filter Order

() Specify order:

(3) Minimum order

_ Options

Density Factor: | 20

— Frequency Specifications

Units: | Hz
Fs: 43000

Fpass 9600

Fstop 12000

-

- Magnitude Specifications

Units: | dB

Apass

Astop g0

__

il

Reédy

set up filter and press B o-. -




Make Coefficient File For CCS

Generate C Header

Filter Design & Analysis Tool - [untitled.fda
File Edit Analysis Targets View Window Help Variable names in C header file
Numerator length: BL

O = ﬂ é & Generate C header ... MNumerator: B

i Code Composer Studio (r) IDE
Current Fitter
XILINYX Coefficient {,COE) File

Generate HDL ...

Data type to use in export

@ Export suggested: Double-precision
floating point

() Export as: \
Fractional length: 31

Here you can change the coefficient data type to match
your desired coefficient quantization.



Main Datatypes for FIR/IIR Filtering

Signed integer:
(8 bit) signed char:-128 to +127
(16 bit) short: -32768 to +32767
(32 bit) int: -215E6 to 215E6

Floating point:

(32 bit) float: -3.4E38 to +3.4E38 with numbers
as small as |.175E-38

(64 bit) double:-1.7E308 to +1.7E308 with
numbers as small as 2.2E-308
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Example DP-FP Coefficient File

Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool

*
*
* Generated by MATLAB(R) 7.0 and the
*
* Generated on: 19-Aug-2005 13:04:09
*

*/

/*

* Discrete-Time FIR Filter (real)

X mm e ———————

* Filter Structure : Direct-Form FIR
* Filter Order : 8

* Stable : Yes

* Linear Phase : Yes (Type 1)

*/

/* General type conversion for MATLAB generated-C-code */

#include "tmwtypes.h"

/*

* Expected path to tmwtypes.h

* C:\MATLAB7\extern\includec\tmwtypes.h

*/

const int BL = 9

const real64 T B[9] = {
0.02588139692752, 0.08678803067191, 0.1518399865268,
0.2205226777929, 0.2017873498839, 0.1518399865268,
0.02588139692752

Note this new header
file needed for CCS to
understand Matlab s

strange data types.

Add this header file
to your project (in the Matlab
directory tree) or edit the
datatypes.

0.2017873498839,
0.08678803067191,



FIR Filter Coefficient
Quantization Considerations

Key choice: floating point vs. fixed point

Advantages of floating point math:
Less quantization error (more precision)
Don’ t have to worry about overflow
Don’ t have to worry about keeping track of scaling factors
Much easier to code
Disadvantages of floating point math:
Executes slower than fixed point
Requires you to use a floating-point DSP ($$$, power, heat,...)

C code allows you to “cast’ variables into any datatype
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Casting Variables in C

short a,b,c; /I 1 6-bit signed integers
double x,y,z; /I double-precision float
X = 456.78;

a = (short) x;

a =-4321;

X = (double) a;

X = 33333;

a = (short) x; // What happens here!

Note: Type casting takes precedence over most math operators.
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Write Code to Realize FIR Filter

Direct form | implies direct realization of the
convolution equation (multiply and accumulate)

M-1

yln] = Z h|m|z[n — m]

m=I)

Some practical considerations:
Allocate buffer of length M for filter coefficients.
Allocate buffer of length M for input samples.

Move input buffer pointer as new data comes in or
move data!
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Double-Precision Floating Point
Filter Realization

16-bit short convert to .
double-precision do all calculations

NpUEsampie float i 1.+1 in double-precision
from ADC oatinrange [-1,+1] floati P cast filter output
oating point math :
as 16-bit short

keeping track of the
double-precision largest positive and for output to DAC
floating point filter largest negative results
coefficients

Since everything is DP-FP, you don’ t need to worry about
overflow (except at the output)
Keeping track of the largest positive and largest negative
intermediate results is optional, but will help with:
Detecting overflow in the output (short)
Designing a fixed-point implementation with proper
scaling factors that avoids overflow (Lab 3)



Verifying your real-time filter
works correctly

Method |: Sinusoids (easy but labor intensive)

Make a table with columns for f,a,,and a,,,

Generate input sinusoid at frequency f with amplitude a...
LTI filter output will also be at frequency f but with amplitude a_,,..
Magnitude response of the filter is 20log,,(a,/a;,)

Compare actual magnitude response to the predicted response from
Matlab

Method 2:White noise (more complicated but less work)

Generate at least 10 seconds of a white noise input signal (matlab
command rand or randn)

Record your digital filter output to a .wav file

Use Matlab commands wavread and pwelch to estimate “power
spectral density” of the digital filter output



