D. Richard Brown llI
Associate Professor

Worcester Polytechnic Institute
d Computer Engineering Department
drb@ece.wpi.edu

31-October-201 |

ECE4703 REAL-TIME DSP
AMPLING, QUANTIZATION,
REAL-TIME FIR FILTERING

RCES7
7 Q.A
el

~
®
-}
v}

Some Challenges of Real-Time DSP

Analog to digital conversion
Are we sampling fast enough?

How much quantization noise have we added to the original analog
signal?

Are we clipping!?

ADC non-idealities like non-linear response, etc.

Digital to analog conversion
How much distortion is added by the reconstruction filter?

DAC non-idealities like non-linear response, etc.

DSP

Are we running in real time?
Do we have enough memory?

Distortion caused by digital processing, e.g. overflow, underflow, fixed
point effects, etc.

Al =
Ny
Dy

<.
2

Analog To Digital Conversion

apalog s ADC : d.igital
signal signal

An ADC performs two functions:

sampling: convert a continuous-time (CT) signal
to a discrete-time (DT) signal

k| = 24(k - Ts +7)
quantization: convert a continuous-valued (CV)
signal to a discrete-valued (DV) signal

¢|k| = quant{z|k|, N}

OWTEC,
‘5} 47&’25%\4"0’
~ ! \

ADC Sampling (CT =>» DT)

Recall Nyquist’ s sampling theorem (ECE2312): A
bandlimited CT signal with maximum frequency B Hz can be
uniquely recovered from its samples only if the sampling
frequency f. >= 2B samples per second

Reconstruction formula (DT =» CT, performed by DAC):

x(t) = x (t) if f{, >= 2B (see ECE2312 textbook for proof).

OWTECy,
‘5} ﬂf&}%%@
5 ia a1\

= ,4&1%::\ - rf.
AV
N\ N 3

DAC Sinc Reconstruction
(Kehtarnavaz Figure 2-17)

Sinc Interpolation
Samples

Interpotated curve

£
w0
©
2
£
3
=

Sampling Example

o(t) =sin(27 - t) - cos(2m - 10 - 1)

What is the minimum sampling frequency to
allow for exact recovery of the original
analog signal from its samples?

Sampling Example: No Aliasing (f.=50)

Sampling Example: Aliasing (f.=10)

0]
>
o
<
c
R
®

Aliasing Audio Examples

Please see file agc.m on course website

NTEC,
QO\‘ /74,/
& e (O
&' [

ADC Quantization (CV = DV)

An N-bit quantizer converts a continuous valued
(CV) signal to a discrete valued (DV) signal with 2N
discrete values

Remarks:

Unlike sampling, quantization always causes irreversible
distortion of the signal

Two types of distortion:

o Saturation/clipping

o Quantization error

In normal cases with no clipping, increasing the number of

bits (N) typically decreases the distortion caused by
quantization

3-bit ldeal Quantization

discrete-valued output

saturation/clipping

continuous-valued input

saturation/clipping

3-bit ldeal Quantization
(Kehtarnavaz Figure 2-15)

A/D Input/Output

Quantizer + Reconstruction Example
(N=4,{.=50)

Signal to Noise Ratio of Quantization

SNRmax =6.02N + 1.76

-40 -30 -20 -10 0 10
Am(dB)

Figure 2-17: Signal-to-noise ratio of an ideal 8-bit A/D converter.

Bottom line: Best SNR is achieved when analog input signal amplitude
is as large as possible without saturation/clipping.

Quantization in Matlab

Matlab variables are typically 64-bit double-precision
floating point.We often refer to this as “infinite precision’.

One way to quantize vectors Matlab:

First check for saturation:

vref = 1;

il = find(x>vref*(2~(N-1)-1)/(2~(N-1)));
x(il) = vref*(2~(N-1)-1)/(2~(N-1));

i2 = find(x<-vref);

x(i2) = -vref;

Then perform quantization:
xq = round((x/vref)*2~(N-1))*vref/(2~(N-1));

You can also compute quantization error
equant = x-Xxq;

Signals Review: Impulse Response

® Definition: A discrete time impulse function, d[n], is
defined as: d[n] = | if n=0, d[n] = 0 otherwise.

din]

—o—c—oo—T1Tooooooooooo— "

® Definition:The “impulse response” of a linear time
invariant filter is the output that occurs if the input is d[n].

h[n]

din]

+++0TTT"‘1T++++++n

Finite Impulse Response (FIR)
Filtering — Basics

Definition: A filter is FIR if there exists N<oo such that the
filter’ s impulse response h[n]=0 for all n>N.

FIR filters are frequently used in real-time DSP systems
Simple to implement
Guaranteed to be stable
Can have nice properties like linear phase

Input/output relationship

M-1

yln] = Z hlm]zn — m]

m=0

X = input, Y = output, h = impulse response (aka “filter coefficients”)
M = # of filter coefficients

NTEC,
QO“ ’74,/
& (O
S\ w72

d
() =
e W\\=VS
EXN S
K/ Y
* 1865 °

Finite Impulse Response (FIR)
Filtering — More Basics

Transfer function (useful for what?)

Frequency response (useful for what?)

éo“:fsrf 8
Py

Implementation of FIR Filters

M-1

l/[ll] == Z h['ﬂl]l-' [71. — 772-]

m=I)

@ If everything is “infinite precision”, then there isn’ t
too much to worry about (except real-time
considerations)

® Finite precision raises some issues:

* Precision:
o How is the input signal quantized?
o How is the output signal quantized?
o How are the filter coefficients quantized? FIR filtering is usually

o How are intermediate results (products, sums) less sensitive to these

quantized/stored? choices than IIR
filtering because there is no

11 o . ”
[]
Realization Structure feedback.
o In what order should we do the calculations?

Actual performance can
be significantly affected
by these choices.

RN
I
=
-
Y
S
o)
TN\

%

5

L
%

Typical Procedure for Designing and
Implementing FIR Filters

Design filter Matlab
e Type:low pass, high pass, band pass, band stop, ...
e Filter order M
e Desired frequency response

Decide on a realization structure
Decide how coefficients will be quantized.
Compute coefficients

Decide how everything else will be quantized (input €CS
samples, output samples, products, and sums)

Write code to realize filter (based on step 2)
Test filter and compare to theoretical expectations

Tools for Designing FIR Filters

B Filter Design & Analysis Tool - [untitled.fda]

7,

Launch
MATLAE 7.0

>> fdatool

R
Dypeny

File Edit

Analysis Targets View Window Help

DeEER <~ 220X NHNMNNMA D BLOXE| N

Fitter Specifications

=10
[J[€]

!

]
8

Current Filter Information

Structure: Direct-Form FIR
Order: 50

Sections: 1

Stable: Yes

Source: Designed

Fiter Manager ...

Response Type

() |Lowpass |
O Highpass I

() Bandpass
() Bandstop

() | Diferertiator - |

Design Method

OIR | Butterworth ~ |
(3)FIR | Equiripple v I

Fiter Order

() Specify order:
() Minimum order

Options
Density Factor:

20

Fpass Fslop

Frequency Specifications

Fs: 48000

Fpass 9600

Fstop | 12000

Fsf2 f(Hz)

Magnitude Specifications
Apass

Astop 80

OCES T, 73

Filter Realization Structures

Filter realization structure specifies how past calculations are stored and the
order in which calculations are performed.

Lots of different structures available
Direct form |, direct form Il, transposed forms, cascade, parallel, lattice, ...

Choice of structure affects computational complexity and how quantization errors
are manifested through the filter

: ——

Filter Design & Analysis Tool - [untitled.fda]

B Convert Structure =]

File Edit Analysis Targets View Window Help Convert To

D ESR|> > (2R OPX 11

Current Fitter Information Fiter Specificatid l

Structure: Direct-Form FIR
Order: 50
Sections:

right click e
in thIS pane Source: Desighed

State-Space

Direct-Form FIR

Direct-Form FIR Transposed
Direct-Form Symmetric FIR

Convert Structure ...

Focus on “Direct form” for now.
We' Il discuss other options when

Show Fiter Structure : we look at IIR filtering later.
What's This?

;?;g«%‘, L?wsv u::i'

o 7

N\

~
®
-}

v}

Direct Form | Filter Structure

) H
‘5} w"@wd"(;
| |

(picture from Matlab’ s help system)

S ,L&i{{j ‘! (f‘
s €6 g

B Filter Design & Analysis Tool - [untitled.fda]

Compute FIR Filter Coefficients

__ Current Filter Information

Structure:
Order: 50
Sections: 1
Stahle:
Source:

Yes
Designed

Direct-Form FIR

[Store Fitter ...

[Filter Manager ...

File Edit Analysis Targets View Window Help

DeESl »~ 2POX 0K

_Fitter Specifications

|DINRd & < [T~ Bk @R W

Hhag. (dB)

T

Fpass Fstop

Fs2 f(Hz)

— Response Type

@ } Lowpass

(€]

O jnghpass
() Bandpass
() Bandstop

I=Tw

0

[}
]

5|

O | Ditferentiator

‘ui |

| Design Method

5

B

O IR \ Butterworth

rGEil

AR

(&) FIR ‘ Equiripple

B

__ Filter Order

() Specify order:

(3) Minimum order

_ Options

Density Factor: | 20

— Frequency Specifications

Units: | Hz
Fs: 43000

Fpass 9600

Fstop 12000

-

- Magnitude Specifications

Units: | dB

Apass

Astop g0

__

il

Reédy

set up filter and press B o-. -

Make Coefficient File For CCS

Generate C Header

Filter Design & Analysis Tool - [untitled.fda
File Edit Analysis Targets View Window Help Variable names in C header file
Numerator length: BL

O = ﬂ é & Generate C header ... MNumerator: B

i Code Composer Studio (r) IDE
Current Fitter
XILINYX Coefficient {,COE) File

Generate HDL ...

Data type to use in export

@ Export suggested: Double-precision
floating point

() Export as: \
Fractional length: 31

Here you can change the coefficient data type to match
your desired coefficient quantization.

Main Datatypes for FIR/IIR Filtering

Signed integer:
(8 bit) signed char:-128 to +127
(16 bit) short: -32768 to +32767
(32 bit) int: -215E6 to 215E6

Floating point:

(32 bit) float: -3.4E38 to +3.4E38 with numbers
as small as |.175E-38

(64 bit) double:-1.7E308 to +1.7E308 with
numbers as small as 2.2E-308

OWTEC,
‘5} 47&’25%\4"0’
~ ! \

Example DP-FP Coefficient File

Filter Coefficients (C Source) generated by the Filter Design and Analysis Tool

*
*
* Generated by MATLAB(R) 7.0 and the
*
* Generated on: 19-Aug-2005 13:04:09
*

*/

/*

* Discrete-Time FIR Filter (real)

X mm e ———————

* Filter Structure : Direct-Form FIR
* Filter Order : 8

* Stable : Yes

* Linear Phase : Yes (Type 1)

*/

/* General type conversion for MATLAB generated-C-code */

#include "tmwtypes.h"

/*

* Expected path to tmwtypes.h

* C:\MATLAB7\extern\includec\tmwtypes.h

*/

const int BL = 9

const real64 T B[9] = {
0.02588139692752, 0.08678803067191, 0.1518399865268,
0.2205226777929, 0.2017873498839, 0.1518399865268,
0.02588139692752

Note this new header
file needed for CCS to
understand Matlab s

strange data types.

Add this header file
to your project (in the Matlab
directory tree) or edit the
datatypes.

0.2017873498839,
0.08678803067191,

FIR Filter Coefficient
Quantization Considerations

Key choice: floating point vs. fixed point

Advantages of floating point math:
Less quantization error (more precision)
Don’ t have to worry about overflow
Don’ t have to worry about keeping track of scaling factors
Much easier to code
Disadvantages of floating point math:
Executes slower than fixed point
Requires you to use a floating-point DSP ($$$, power, heat,...)

C code allows you to “cast’ variables into any datatype

OWTECy,
‘5} W’Eﬁ%\%@’
~ ! \

Casting Variables in C

short a,b,c; /I 1 6-bit signed integers
double x,y,z; /I double-precision float
X = 456.78;

a = (short) x;

a =-4321;

X = (double) a;

X = 33333;

a = (short) x; // What happens here!

Note: Type casting takes precedence over most math operators.

oWy,
‘5' VAN /(:
& 2

Write Code to Realize FIR Filter

Direct form | implies direct realization of the
convolution equation (multiply and accumulate)

M-1

yln] = Z h|m|z[n — m]

m=I)

Some practical considerations:
Allocate buffer of length M for filter coefficients.
Allocate buffer of length M for input samples.

Move input buffer pointer as new data comes in or
move data!

OWTECy,
‘53 ﬂf@%%(‘
Sy 5 5

Double-Precision Floating Point
Filter Realization

16-bit short convert to .
double-precision do all calculations

NpUEsampie float i 1.+1 in double-precision
from ADC oatinrange [-1,+1] floati P cast filter output
oating point math :
as 16-bit short

keeping track of the
double-precision largest positive and for output to DAC
floating point filter largest negative results
coefficients

Since everything is DP-FP, you don’ t need to worry about
overflow (except at the output)
Keeping track of the largest positive and largest negative
intermediate results is optional, but will help with:
Detecting overflow in the output (short)
Designing a fixed-point implementation with proper
scaling factors that avoids overflow (Lab 3)

Verifying your real-time filter
works correctly

Method |: Sinusoids (easy but labor intensive)

Make a table with columns for f,a,,and a,,,

Generate input sinusoid at frequency f with amplitude a...
LTI filter output will also be at frequency f but with amplitude a_,,..
Magnitude response of the filter is 20log,,(a,/a;,)

Compare actual magnitude response to the predicted response from
Matlab

Method 2:White noise (more complicated but less work)

Generate at least 10 seconds of a white noise input signal (matlab
command rand or randn)

Record your digital filter output to a .wav file

Use Matlab commands wavread and pwelch to estimate “power
spectral density” of the digital filter output

