
D. Richard Brown III	

Associate Professor	

Worcester Polytechnic Institute	

Electrical and Computer Engineering Department	

drb@ece.wpi.edu	

	

14-November-2011	

Efficient Real-Time DSP	

�  Data types	

�  Memory usage (linker command file)	

�  Letting CCS optimize your code for you	

�  Still not fast enough? 	

�  Assembly language programming for the C6x	

�  Best results achieved when you take full advantage of C6x
architecture:	

○  Registers	

○  Functional units	

○  Pipelining	

○  Fetch/execute packets	

Data Types and Memory Usage	

� Double-precision floating point	

�  Single-precision floating point	

�  Fixed point	

Page
3 of
43

Slower	

Faster	

�  SDRAM (off chip)	

�  SRAM (on chip)	

Slower	

Faster	

Optimizing Compiler	

Typical speed gains of 2x to 5x with compiler optimization.	

Assembly Language Programming on the
TMS320C6713	

�  To achieve the best possible performance, sometimes you
have to take matters into your own hands...	

�  Three options:	

1.  Linear assembly (.sa)	

○  Compromise between effort and efficiency	

○  Typically more efficient than C	

○  Assembler takes care of details like assigning “functional
units”, registers, and parallelizing instructions	

2.  ASM statement in C code (.c)	

○  asm(“assembly code”)	

3.  C-callable assembly function (.asm)	

○  Full control of assigning functional units, registers,

parallelization, and pipeline optimization	

C-Callable Assembly Language Functions	

�  Basic concepts:	

�  Arguments are passed in via registers A4, B4, A6, B6, ... in
that order. All registers are 32-bit.	

�  Result returned in A4 also.	

�  Return address of calling code (program counter) is in B3.

Don’t overwrite B3!	

�  Naming conventions:	

○  In C code: 	
label	

○  In ASM code: 	
_label (note the leading underbar)	

�  Accessing global variables in ASM:	

○  .ref _variablename	

�  A function prototype must also be included in your C code.	

Skeleton C-Callable ASM Function	

; header comments	

; passed in parameters in registers A4, B4, A6, ... in that order	

	

	
 	
 	
.def _myfunc 	
 	
; allow calls from external	

ACONSTANT 	
.equ 100 	
 	
; declare constants	

	
 	
 	
.ref _aglobalvariable 	
; refer to a global variable	

	

_myfunc: 	
NOP 	
 	
 	
; instructions go here	

	
 	
 	
B 	
 	
B3 	
; return (branch to addr B3)	

	
 	
 	
 	
 	
 	
; function output will be in A4	

	
 	
 	
NOP 	
 	
5 	
; pipeline flush	

	

	
 	
 	
.end	

Example C-Callable Assembly Language Program (Chassaing) ���
int fircasmfunc(short x[], short h[], int N);	

Writing Efficient Assembly Language
Programs for the C6x	

�  Need to become familiar with:	

�  Specific architecture, capabilities, and limitations of

the C6x	

○  Registers	

○  Functional units	

○  Pipeline	

○  Parallelization	

○  Other miscellaneous constraints …	

�  Instruction set	

○  Different commands for single precision floating

point, double precision floating point, and integer
math	

TMS320C67x Block Diagram	

One instruction is 32���
bits. Program bus is 256 bits
wide.	

	

ð Can execute up to 8
instructions per clock cycle
(225MHz->4.4ns clock cycle).	

	

8 independent functional units:	

-  2 multipliers	

-  6 ALUs	

	

Code is efficient if all 8
functional units are always busy.	

	

Register files each have 16
general purpose registers, each
32-bits wide (A0-A15, B0-B15). 	

C6713 Data Paths and Functional Units	

�  Two data paths (A & B)	

�  Data path A	

�  Multiply operations (.M1)	

�  Logical and arithmetic operations (.L1)	

�  Branch, bit manipulation, and arithmetic operations (.S1)	

�  Loading/storing and arithmetic operations (.D1)	

�  Data path B	

�  Multiply operations (.M2)	

�  Logical and arithmetic operations (.L2)	

�  Branch, bit manipulation, and arithmetic operations (.S2)	

�  Loading/storing and arithmetic operations (.D2)	

�  All data (not program) transfers go through .D1 and .D2	

Fetch & Execute Packets	

�  C6713 fetches 8 instructions at a time (256 bits)	

�  Definition: “Fetch packet” is a group of 8 instructions

fetched at once.	

�  Coincidentally, C6713 has 8 functional units.	

�  Ideally, all 8 instructions are executed in parallel.	

�  Often this isn’t possible, e.g.:	

�  3 multiplies (only two .M functional units)	

�  Results of instruction 3 needed by instruction 4 (must wait for
3 to complete)	

Execute Packets	

�  Definition: “Execute Packet” is a group of (8 or less)

consecutive instructions in one fetch packet that can be
executed in parallel.	

�  C compiler provides a flag to indicate which
instructions should be run in parallel.	

�  You have to do this manually in Assembly using the
double-pipe symbol “||”.	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

fetch packet	

execute packet 1	
 execute packet 2	
 execute packet 3	

C6713 Instruction Pipeline Overview	

All instructions flow through the following steps:	

1.  Fetch	

a)  PG: Program address Generate	

b)  PS: Program address Send	

c)  PW: Program address ready Wait	

d)  PR: Program fetch packet Receive	

2.  Decode	

a)  DP: Instruction DisPatch	

b)  DC: Instruction DeCode	

3.  Execute	

a)  10 phases labeled E1-E10	

b)  Fixed point processors have only 5 phases (E1-E5)	

each step	

= 1 clock cycle	

Pipelining: Ideal Operation	

Remarks:	

•  At clock cycle 11, the pipeline is “full”	

•  There are no holes (“bubbles”) in the pipeline in this example	

Pipelining: “Actual” Operation	

Remarks:	

•  Fetch packet n has 3 execution packets	

•  All subsequent fetch packets have 1 execution packet	

•  Notice the holes/bubbles in the pipeline caused by lack of parallelization	

Fetch Phases of C6713 Pipeline	

4 EP	

2 EP	

2 EP	

1 EP	

PG: Program Address Generate	

PS: Program Address Send	

PW: Program Address Ready Wait	

PR: Program Fetch Packet Receive	

Decode Phases of C6713 Pipeline	

�  DP (instruction dispatch) phase	

�  Fetch packets (FPs) are split into execute packets (EPs)	

�  Instructions in an EP are assigned to appropriate functional units for decoding	

�  DC (instruction decode) phase: convert instruction to microcode for appropriate
functional unit	

Execute Phases of C6713 Pipeline	

Execute Phases of C6713 Pipeline	

�  C67x has 10 execute phases (floating point)	

�  C62x/C64x have 5 execute phases (fixed point)	

�  Different types of instructions require different numbers of

execute phases to complete	

�  Anywhere between 1 and all 10 phases	

�  Most instruction tie up their functional unit for only one phase (E1)	

Execute Stage: Delay Slots	

�  How long must we wait for the result of an
instruction?	

�  Most instructions’ results are available at the end of E1

(called “single-cycle” instructions)	

○  Examples:	

�  ABSSP (single precision absolute value)	

�  RCPSP (single precision reciprocal approximation)	

�  Some instructions take more time to produce results	

○  Examples:	

�  MPYSP (single precision multiply): Results available at the end of
E4 (3 delays slots)	

�  ADDSP (single precision addition): Results available at the end
of E4 (3 delay slots) 	

Execute Stage: Functional Latency	

�  How long must we wait for the functional unit to be free?	

�  Most instructions tie up the functional unit for only one

pipeline stage (E1)	

○  Examples:	

�  All single-cycle instructions	

�  Most multicycle instructions, including, for example, ADDSP (single

precision addition)	

�  Some instructions tie up the execution unit for more than one
pipeline stage	

○  Examples:	

�  MPYDP (double precision multiply): .M execution unit is tied up for 4
pipeline stages (E1-E4). Can’t use this functional unit until E4
completes.	

Execution Stage Examples (1)	

Functional unit free after E1 ���
(1 functional unit latency)	

results available after E1 (zero
delay slots)	

Execution Stage Examples (2)	

results available after	

E4 (3 delay slots)	

Functional unit free after E1	

(1 functional unit latency)	

Execution Stage Examples (3)	

Results available after	

E4 (3 delay slots)	

Functional unit free after E1	

(1 functional unit latency)	

Execution Stage Examples (4)	

Results available after E10 (9
delay slots)	

Functional unit free after E4	

(4 functional unit latency)	

Delay Slots & Functional Latency	

�  IMPORTANT: Delay slots are not the same as functional unit
latency	

�  Example:	

MPYSP .M1 A1, A2, A3 	
 	
; A3 = A1 x A2	

MPYSP .M1 A4, A5, A6 	
 	
; A6 = A4 x A5	

MPYSP .M1 A7, A8, A9 	
 	
; A9 = A6 x A7	

MPYSP .M1 A10, A11, A12 	
 	
; A12 = A10 x A11	

�  Is this code ok?	

Delay Slots & Functional Latency	

� What about this code?	

MPYSP .M1 A1, A2, A3 	
; A3 = A1 x A2	

MPYSP .M1 A3, A4, A5 	
; A5 = A3 x A4	

Delay Slots & Functional Latency	

�  You are probably going to get strange results here because
the result in A3 is not available until E4 completes for the
first MPYSP instruction	

�  “Data hazard” due to the delay slots in MPYSP 	

�  How to “fix” the last example	

MPYSP .M1 A1, A2, A3 	
; A3 = A1 x A2	

NOP 	
 3 	
 	
; insert 3 delay slots	

	
 	
 	
 	
 	
; results of first multiply now in A3	

MPYSP .M1 A3, A4, A5 	
; A5 = A3 x A4	

Delay Slots & Functional Latency	

� What about this code?	

MPYDP .M1 A1:A0, A3:A2, A5:A4	

MPYDP .M1 A7:A6, A9:A8, A11:A10	

	

Delay Slots & Functional Latency	

�  This last example won’t work because the
functional unit M1 is tied up for 4 clock
cycles (E1-E4) by MPYDP	

�  “Resource conflict” due to the functional
latency in MPYDP	

� How to fix it:	

MPYDP .M1 A1:A0, A3:A2, A5:A4	

NOP 	
 	
3 	
; 3 NOPs for func latency	

MPYDP .M1 A7:A6, A9:A8, A11:A10	

	

Delay Slots & Functional Latency	

� What about this code?	

MPYDP .M1 A1:A0, A3:A2, A5:A4	

MPYDP .M1 A5:A4, A8:A7, A11:A10	

Delay Slots & Functional Latency	

�  Two problems now!	

�  Resource conflict for .M1 unit (E2-E4)	

�  Data hazard for result in A5:A4 (E2-E10)	

�  The “fix”:	

MPYDP .M1 A1:A0, A3:A2, A5:A4	

NOP 	
 	
9	

MPYDP .M1 A5:A4, A8:A7, A11:A10	

�  Note: Could use M1 after E4, but A5:A4 not
available until after E10.	

Functional Latency & Delay Slots	

�  Functional Latency: How long must we wait for
the functional unit to be free?	

�  Delay Slots: How long must we wait for the result
of a calculation to be available?	

�  General remarks:	

�  Functional unit latency <= Delay slots	

�  Strange results will occur in ASM code if you don’t pay

attention to delay slots and functional unit latency	

�  All problems can be resolved by “waiting” with NOPs	

�  Efficient ASM code tries to keep functional units busy all

of the time.	

�  Efficient code is hard to write (and follow).	

Additional Constraints: Data Cross-Paths	

�  TMS320C6x core has A side and B side	

�  A side: M1, S1, L1, D1, and register file A0-A15	

�  B side: M2, S2, L2, D2, and register file B0-B15	

�  Cross path instruction examples:	

�  MPYSP .M1x A2, B2, A4 ; cross path brings B2 to M1	

�  MPYSP .M2x A2, B2, B4 ; cross path brings A2 to M2	

�  Constraint: Only two cross-paths are available per cycle:
one A→2 and one B→1.	

�  Note: Can’t have two A→2 or two B→1 cross paths in the

same cycle.	

Additional Constraints	

�  Memory constraints	

�  Two memory accesses can be performed in one cycle if

they don’t access the same bank of memory 	

�  See TMS320C6000 Programmer’s Guide	

�  Load/Store constraints	

�  Address register must agree with .D unit, e.g.:	

○  LDW .D1 *A1, A2 ; valid because A1 and D1 agree	

�  Parallel loads and stores must use different register files	

�  See TMS320C6000 Programmer’s Guide	

Suggested Reading	

�  Reference material (on course web page)	

�  TMS320C6000 CPU Instruction Set and Reference

Guide	

�  TMS320C6000 Programmer’s Guide	

�  Kehtarnavaz Chap 3	

�  Kehtarnavaz Chap 7	

