ECE4703: Lecture 9

D. Richard Brown III

Worcester Polytechnic Institute

November 29, 2012

FFT Complexity Analysis: $N=1$

When $N=1$, there is nothing to divide into even and odd parts, so we will just use the DFT. The DFT equation:

$$
X[k]=\sum_{n=0}^{N-1} x[n] e^{-j 2 \pi k n / N} \quad \text { for } k=0,1, \ldots, N-1
$$

When $N=1$, we have

$$
X[0]=x[0] e^{0}=x[0]
$$

No multiplies or additions. Hence a one-point DFT/FFT has no MACs.

FFT Complexity Analysis: $N=2$

Two-point FFT computed using radix-2 decimation in time:

$$
\begin{aligned}
X[0] & =X_{\text {even }}[0]+e^{-j 2 \pi \cdot 0 / 2} X_{\text {odd }}[0]=X_{\text {even }}[0]+X_{\text {odd }}[0] \\
X[1] & =X_{\text {even }}[1]+e^{-j 2 \pi \cdot 1 / 2} X_{\text {odd }}[1]=X_{\text {even }}[1]-X_{\text {odd }}[1]
\end{aligned}
$$

Note that $X_{\text {even }}[k]$ and $X_{\text {odd }}[k]$ for $k=0,1$ are just one-point FFTs.

$$
\begin{aligned}
X_{\text {even }}[0] & =\operatorname{DFT}_{1}\{x[0], 0\}=x[0] \\
X_{\text {odd }}[0] & =\operatorname{DFT}_{1}\{x[1], 0\}=x[1] \\
X_{\text {even }}[1] & =\operatorname{DFT}_{1}\{x[0], 1\}=x[0] \\
X_{o d d}[1] & =\operatorname{DFT}_{1}\{x[1], 1\}=x[1]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
X[0] & =x[0]+x[1] \\
X[1] & =x[0]-x[1]
\end{aligned}
$$

How many MACs in the R2-DIT two-point FFT?
Note that the two-point DFT and FFT are identical. Still no gain.

An Observation

Look again at the one-point FFTs:

$$
\begin{aligned}
X_{\text {even }}[0] & =\operatorname{DFT}_{1}\{x[0], 0\}=x[0] \\
X_{\text {odd }}[0] & =\operatorname{DFT}_{1}\{x[1], 0\}=x[1] \\
X_{\text {even }}[1] & =\operatorname{DFT}_{1}\{x[0], 1\}=x[0] \\
X_{\text {odd }}[1] & =\operatorname{DFT}_{1}\{x[1], 1\}=x[1]
\end{aligned}
$$

Note that $X_{\text {even }}[1]=X_{\text {even }}[0]$ and $X_{\text {odd }}[1]=X_{\text {odd }}[0]$.
This is a consequence of the periodicity of the DFT/FFT. Recall that, in general, a P-point DFT/FFT satisfies

$$
X[k+\ell P]=\mathrm{DFT}_{P}\{\{x\}, k+\ell P\}=X[k]
$$

This property is critical to getting the desired complexity reduction.

FFT Complexity Analysis: $N=4$ (part 1)

Four-point FFT computed using radix-2 decimation in time:

$$
\begin{aligned}
X[0] & =X_{\text {even }}[0]+e^{-j 2 \pi \cdot 0 / 4} X_{\text {odd }}[0]=X_{\text {even }}[0]+X_{\text {odd }}[0] \\
X[1] & =X_{\text {even }}[1]+e^{-j 2 \pi \cdot 1 / 4} X_{\text {odd }}[1]=X_{\text {even }}[1]-j X_{\text {odd }}[1] \\
X[2] & =X_{\text {even }}[2]+e^{-j 2 \pi \cdot 2 / 4} X_{\text {odd }}[2]=X_{\text {even }}[2]-X_{\text {odd }}[2] \\
X[3] & =X_{\text {even }}[3]+e^{-j 2 \pi \cdot 3 / 4} X_{\text {odd }}[3]=X_{\text {even }}[3]+j X_{\text {odd }}[3]
\end{aligned}
$$

Remarks:

- $X_{\text {even }}[k]$ and $X_{\text {odd }}[k]$ for $k=0,1,2,3$ are all results from two-point FFTs.
- Recall that the two-point DFT/FFT $\{X[0], X[1]\}=$ FFT $_{2}\{x[0], x[1]\}$ requires two MACs to return two values.
- The periodicity of the DFT/FFT implies that

$$
\begin{aligned}
X_{\text {even }}[2] & =X_{\text {even }}[0] \\
X_{\text {even }}[3] & =X_{\text {even }}[1] \\
X_{\text {odd }}[2] & =X_{\text {odd }}[0] \\
X_{o d d}[3] & =X_{\text {odd }}[1]
\end{aligned}
$$

Hence, we only need to compute: $\left\{X_{\text {even }}[0], X_{\text {even }}[1]\right\},\left\{X_{\text {odd }}[0], X_{\text {odd }}[1]\right\}$.

FFT Complexity Analysis: $N=4$ (part 2)

Four-point FFT computed using radix-2 decimation in time:

$$
\begin{aligned}
X[0] & =X_{\text {even }}[0]+e^{-j 2 \pi \cdot 0 / 4} X_{\text {odd }}[0]=X_{\text {even }}[0]+X_{\text {odd }}[0] \\
X[1] & =X_{\text {even }}[1]+e^{-j 2 \pi \cdot 1 / 4} X_{\text {odd }}[1]=X_{\text {even }}[1]-j X_{\text {odd }}[1] \\
X[2] & =X_{\text {even }}[2]+e^{-j 2 \pi \cdot 2 / 4} X_{\text {odd }}[2]=X_{\text {even }}[2]-X_{\text {odd }}[2] \\
X[3] & =X_{\text {even }}[3]+e^{-j 2 \pi \cdot 3 / 4} X_{\text {odd }}[3]=X_{\text {even }}[3]+j X_{\text {odd }}[3]
\end{aligned}
$$

Computation of $\left\{X_{\text {even }}[0], X_{\text {even }}[1]\right\}=\operatorname{FFT}_{2}\{x[0], x[2]\}$ requires how many MACs?

FFT Complexity Analysis: $N=4$ (part 2)

Four-point FFT computed using radix-2 decimation in time:

$$
\begin{aligned}
X[0] & =X_{\text {even }}[0]+e^{-j 2 \pi \cdot 0 / 4} X_{\text {odd }}[0]=X_{\text {even }}[0]+X_{\text {odd }}[0] \\
X[1] & =X_{\text {even }}[1]+e^{-j 2 \pi \cdot 1 / 4} X_{\text {odd }}[1]=X_{\text {even }}[1]-j X_{\text {odd }}[1] \\
X[2] & =X_{\text {even }}[2]+e^{-j 2 \pi \cdot 2 / 4} X_{\text {odd }}[2]=X_{\text {even }}[2]-X_{\text {odd }}[2] \\
X[3] & =X_{\text {even }}[3]+e^{-j 2 \pi \cdot 3 / 4} X_{\text {odd }}[3]=X_{\text {even }}[3]+j X_{\text {odd }}[3]
\end{aligned}
$$

Computation of $\left\{X_{\text {even }}[0], X_{\text {even }}[1]\right\}=\mathrm{FFT}_{2}\{x[0], x[2]\}$ requires how many MACs? 2
Computation of $\left\{X_{o d d}[0], X_{\text {odd }}[1]\right\}=\mathrm{FFT}_{2}\{x[1], x[3]\}$ requires how many MACs?

FFT Complexity Analysis: $N=4$ (part 2)

Four-point FFT computed using radix-2 decimation in time:

$$
\begin{aligned}
X[0] & =X_{\text {even }}[0]+e^{-j 2 \pi \cdot 0 / 4} X_{\text {odd }}[0]=X_{\text {even }}[0]+X_{\text {odd }}[0] \\
X[1] & =X_{\text {even }}[1]+e^{-j 2 \pi \cdot 1 / 4} X_{\text {odd }}[1]=X_{\text {even }}[1]-j X_{\text {odd }}[1] \\
X[2] & =X_{\text {even }}[2]+e^{-j 2 \pi \cdot 2 / 4} X_{\text {odd }}[2]=X_{\text {even }}[2]-X_{\text {odd }}[2] \\
X[3] & =X_{\text {even }}[3]+e^{-j 2 \pi \cdot 3 / 4} X_{\text {odd }}[3]=X_{\text {even }}[3]+j X_{\text {odd }}[3]
\end{aligned}
$$

Computation of $\left\{X_{\text {even }}[0], X_{\text {even }}[1]\right\}=\mathrm{FFT}_{2}\{x[0], x[2]\}$ requires how many MACs? 2
Computation of $\left\{X_{\text {odd }}[0], X_{\text {odd }}[1]\right\}=\mathrm{FFT}_{2}\{x[1], x[3]\}$ requires how many MACs? 2
How many more MACs are required to assemble the results into a four-point FFT?

FFT Complexity Analysis: $N=4$ (part 2)

Four-point FFT computed using radix-2 decimation in time:

$$
\begin{aligned}
X[0] & =X_{\text {even }}[0]+e^{-j 2 \pi \cdot 0 / 4} X_{\text {odd }}[0]=X_{\text {even }}[0]+X_{\text {odd }}[0] \\
X[1] & =X_{\text {even }}[1]+e^{-j 2 \pi \cdot 1 / 4} X_{\text {odd }}[1]=X_{\text {even }}[1]-j X_{\text {odd }}[1] \\
X[2] & =X_{\text {even }}[2]+e^{-j 2 \pi \cdot 2 / 4} X_{\text {odd }}[2]=X_{\text {even }}[2]-X_{\text {odd }}[2] \\
X[3] & =X_{\text {even }}[3]+e^{-j 2 \pi \cdot 3 / 4} X_{\text {odd }}[3]=X_{\text {even }}[3]+j X_{\text {odd }}[3]
\end{aligned}
$$

Computation of $\left\{X_{\text {even }}[0], X_{\text {even }}[1]\right\}=\operatorname{FFT}_{2}\{x[0], x[2]\}$ requires how many MACs? 2
Computation of $\left\{X_{\text {odd }}[0], X_{\text {odd }}[1]\right\}=\mathrm{FFT}_{2}\{x[1], x[3]\}$ requires how many MACs? 2
How many more MACs are required to assemble the results into a four-point FFT? 4

Hence, the total MACs needed to compute a four-point FFT is 8 .

FFT Complexity Analysis: $N=8$

Eight-point FFT computed using radix-2 decimation in time follows the same accounting:

$$
X[k]=X_{\text {even }}[k]+e^{-j 2 \pi \cdot k / 8} X_{o d d}[k] \quad \text { for } k=0,1, \ldots, 7
$$

Computation of $\left\{X_{\text {even }}[0], X_{\text {even }}[1], X_{\text {even }}[2], X_{\text {even }}[3]\right\}=\mathrm{FFT}_{4}\{x[0], x[2], x[4], x[6]\}$ requires how many MACs?

FFT Complexity Analysis: $N=8$

Eight-point FFT computed using radix-2 decimation in time follows the same accounting:

$$
X[k]=X_{\text {even }}[k]+e^{-j 2 \pi \cdot k / 8} X_{o d d}[k] \quad \text { for } k=0,1, \ldots, 7
$$

Computation of $\left\{X_{\text {even }}[0], X_{\text {even }}[1], X_{\text {even }}[2], X_{\text {even }}[3]\right\}=\mathrm{FFT}_{4}\{x[0], x[2], x[4], x[6]\}$ requires how many MACs? 8

Computation of $\left\{X_{o d d}[0], X_{o d d}[1], X_{o d d}[2], X_{\text {odd }}[3]\right\}=\mathrm{FFT}_{4}\{x[1], x[3], x[5], x[7]\}$ requires how many MACs?

FFT Complexity Analysis: $N=8$

Eight-point FFT computed using radix-2 decimation in time follows the same accounting:

$$
X[k]=X_{\text {even }}[k]+e^{-j 2 \pi \cdot k / 8} X_{o d d}[k] \quad \text { for } k=0,1, \ldots, 7
$$

Computation of
$\left\{X_{\text {even }}[0], X_{\text {even }}[1], X_{\text {even }}[2], X_{\text {even }}[3]\right\}=\mathrm{FFT}_{4}\{x[0], x[2], x[4], x[6]\}$ requires how many MACs? 8

Computation of $\left\{X_{\text {odd }}[0], X_{o d d}[1], X_{o d d}[2], X_{\text {odd }}[3]\right\}=\mathrm{FFT}_{4}\{x[1], x[3], x[5], x[7]\}$ requires how many MACs? 8

How many more MACs are required to assemble the results into an eight-point FFT?

FFT Complexity Analysis: $N=8$

Eight-point FFT computed using radix-2 decimation in time follows the same accounting:

$$
X[k]=X_{\text {even }}[k]+e^{-j 2 \pi \cdot k / 8} X_{o d d}[k] \quad \text { for } k=0,1, \ldots, 7
$$

Computation of
$\left\{X_{\text {even }}[0], X_{\text {even }}[1], X_{\text {even }}[2], X_{\text {even }}[3]\right\}=\mathrm{FFT}_{4}\{x[0], x[2], x[4], x[6]\}$ requires how many MACs? 8

Computation of $\left\{X_{\text {odd }}[0], X_{o d d}[1], X_{o d d}[2], X_{\text {odd }}[3]\right\}=\mathrm{FFT}_{4}\{x[1], x[3], x[5], x[7]\}$ requires how many MACs? 8

How many more MACs are required to assemble the results into an eight-point FFT? 8

Hence, the total MACs needed to compute an eight-point FFT is 24 .

FFT Complexity Analysis: General N

Operation	MACs
Computation of N one-point FFTs	0
Assembling $\frac{N}{2}$ two-point FFTs from N one-point FFTs	N
Assembling $\frac{N}{4}$ four-point FFTs from $\frac{N}{2}$ two-point FFTs	N
Assembling $\frac{N}{8}$ eight-point FFTs from $\frac{N}{4}$ four-point FFTs	N
\vdots	\vdots
Assembling one N-point FFT from two $\frac{N}{2}$-point FFTs	N

Hence, the total MACs needed to compute an N-point FFT is \qquad .

