D. Richard Brown III Associate Professor Worcester Polytechnic Institute Electrical and Computer Engineering Department <u>drb@ece.wpi.edu</u>

Lecture I

ECE4703 REAL-TIME DSP: INTERFACING WITH I/O, DEBUGGING, AND PROFILING

Interfacing a DSP With the Real World

DIP Switches and LEDs

LED and DIP switch interface functions are provided in dsk6713bsl.lib.

Initialize the DSK with the BSL function DSK6713_init();
Initialize DIP/LEDs with DSK6713_DIP_init() and/or DSK6713_LED_init()
Read state of DIP switches with DSK6713_DIP_get(n)
Change state of LEDs with DSK6713_LED_on(n) or DSK6713_LED_off(n) or DSK6713_LED_toggle(n)
where n=0, 1, 2, or 3.

Documentation is available in **Board Support Library API** (on course website).

AIC23 Codec

- AIC23 codec performs both ADC and DAC functions
- Stereo input and output (left+right channels)
- Initialization steps:
 - Initialize the DSK with the BSL function DSK6713_init();
 - Open the codec with the BSL function hCodec = DSK6713_AIC23_openCodec(0,&config);
 - "hCodec" is the codec "handle". You can think of this as a unique address of the codec on the McBSP bus.
 - "config" is the default configuration of the codec. See the header file dsk6713_aic23.h and the AIC23 codec datasheet (link on the course web page) for details.
 - Optional: Set the codec sampling frequency.
 - Configure the McBSP to transmit/receive 32 bits (two 16 bit samples) with the CSL function McBSP_FSETS()
 - Set up and enable interrupts

Codec Initialization Example (from Kehtarnavaz)

Initialization steps:

- 1. Initialize the DSK
- 2. Open the codec with the default configuration.
- Configure multichannel buffered serial port (McBSP)
 - SPCR = serial port control register
 - RCR = receive control register
 - XCR = transmit control register
 - See SPRU508e.pdf
- 4. Set the sampling rate
- 5. Configure and enable interrupts
- Do normal processing (we just enter a loop here)

46

47

3

AIC23 Codec: Interrupts

- We will use an interrupt interface between the DSP and the codec.
- DSP can do useful things while waiting for samples to arrive from codec, e.g. check DIP switches, toggle LEDs
- C6x interrupt basics:
 - Interrupt sources must be mapped to interrupt events
 - 16 physical "interrupt sources" (timers, serial ports, codec, ...)
 - 12 logical "interrupt events" (INT4 to INT15)
 - Interrupt events have associated "interrupt vectors". An "interrupt vector" is a special pointer to the start of the "interrupt service routine" (ISR).
 - Interrupt vectors must be set up in your code (usually in the file "vectors.asm").
 - You are also responsible for writing the ISR.

Interrupts

main code

physical interrupt source X linked to logical interrupt event N

interrupts enabled

interrupt event N occurs (state is

automatically saved)

interrupt vector N

branch to interrupt service routine

interrupt service routine

do something useful

make sure the ISR completes before the next interrupt occurs

return to main code

Interrupt Vector

- We usually link the physical codec interrupt to INT15.
- The ISR in this example is called "serialPortRcvISR" (you can rename it if you like).
- C function "x" is called "_x" in ASM files.
- The interrupt vector is usually in the vectors.asm file:
- Each interrupt vector must be exactly 8 ASM instructions

150	INT15:			
151	MVKL	.S2	_serialPortRcvISR,	BØ
152	MVKH	.S2	_serialPortRcvISR,	BØ
153	В	.S2	BØ	
154	NOP			
155	NOP			
156	NOP			
157	NOP			
158	NOP			

A Simple Interrupt Service Routine

Remarks:

- MCBSP_read() requests L+R samples from the codec's ADC
- MCBSP_write() sends L+R samples to the codec's DAC
- This ISR simply reads in samples and then sends them back out.

Setting the Codec Sampling Frequency

Here we open the codec with the default configuration:

26 hCodec = DSK6713_AIC23_openCodec(0, &config);

// Open the codec

The structure "config" is declared in dsk6713_aic23.h

Rather than editing the default configuration in the header file, we can change the sampling frequency after the initial configuration:

∕* Frequ	lency Definitions */		
#define	DSK6713_AIC23_FREQ_8KHZ	1	
#define	DSK6713_AIC23_FREQ_16KHZ	2	
#define	DSK6713_AIC23_FREQ_24KHZ	3	
#define	DSK6713_AIC23_FREQ_32KHZ	4	This is actually
#define	DSK6713_AIC23_FREQ_44KHZ	5	
#define	DSK6713_AIC23_FREQ_48KHZ	6	44.1K112
#define	DSK6713_AIC23_FREQ_96KHZ	7	

Other Codec Configuration

- Line input volume level (individually controllable for left and right channels)
- Headphone output volume level (individually controllable for left and right channels)
- Digital word size (16, 20, 24, or 32 bit)
- Other settings, e.g. byte order, etc. For more details, see:
 - dsk6713_aic23.h
 - AIC23 codec datasheet (link on course web page)

Codec Data Format and How To Separate the Left/Right Channels

// we can use the union construct in C to have
// the same memory referenced by two different variables
union {Uint32 combo; short channel[2];} temp;

temp.channel[0] (short)

temp.channel[1] (short)

temp.combo (Uint32)

// the McBSP functions require that we
// read/write data to/from the Uint32 variable
temp.combo = MCBSP_read(DSK6713_AIC23_DATAHANDLE);
MCBSP_write(DSK6713_AIC23_DATAHANDLE, temp.combo);

// but if we want to access the left/right channels individually
// we can do this through the short variables
Leftchannel = temp.channel[1];
Rightchannel = temp.channel[0];

Final Remarks on DSP/Codec Interface

- In most real-time DSP applications, you process samples as they become available from the codec's ADC (sample-by-sample operation).
- This means that all processing will be done in the ISR.
 - MCBSP_read()
 - --- processing here ---
 - MCBSP_write()
- The ISR must run in real-time, i.e. the total execution time must be less than one sampling period.
- You can do other tasks, e.g. DIP/LED processing, outside of the ISR (in your main code).

C6713 DSK Memory Architecture

- TSM320C6713 DSP chip has 256kB internal SRAM
 - Up to 64kB of this SRAM can be configured as shared L2 cache
- OSK provides additional 16MB external RAM (SDRAM)
- OSK also provides 512kB external FLASH memory
- Code location (.text in linker command file)
 - internal SRAM memory (fast)
 - external SDRAM memory (typically 2-4x slower, depends on cache configuration)
- Data location (.data in linker command file)
 - internal SRAM memory (fast)
 - external SDRAM memory (slower, depends on datatypes and cache configuration)
- Code+data for all projects assigned in ECE4703 should fit in the C6713 internal SRAM

TMS320C6713 DSK Memory Map

0000 0000	Internal SRAM (256kB)	L2 Memory E	Block Base Address
0003 FFFF			0x0000 0000
		your code+data here	
8000 0000		Tezrobyte HAM	
8FFF FFFF	External SDRAM (16MB)		
8000 0000		16K-Byte RAM	0x0003 0000
8007 FFFF	FLASH	16K-Byte RAM	0x0003 4000
		16K-Byte RAM	0x0003 8000
FFFF FFFF		16K-Byte RAM	0x0003 C000 0x0003 FFFF

Linker Command File Example (part 1)

--diag_suppress=16002

suppress warnings about missing vendor id

MEM {	ORY			
Ì	VECS	o = 0x0000000 1 =	= 0x00000200 /*	<pre>interrupt vectors */</pre>
	IRAM	o = 0x00000200 1 =	= 0x0002FE00 /*	192kB - Internal RAM */
	L2RAM	$o = 0 \times 00030000 $ 1 =	= 0x00010000 /*	64kB - Internal RAM/CACHE */
	EMIFCEØ	$o = 0 \times 80000000 1 =$	= 0x10000000 /*	SDRAM in 6713 DSK */
	EMIFCE1	$o = 0 \times 90000000 1 =$	= 0x10000000 /*	Flash/CPLD in 6713 DSK */
	EMIFCE2	$o = 0 \times A 0 0 0 0 0 0 0 1 =$	= 0x10000000 /*	Daughterboard in 6713 DSK */
	EMIFCE3	$o = 0 \times B0000000 1 =$	= 0x10000000 /*	Daughterboard in 6713 DSK */

Interrupt vectors start at 0000000.

Addresses 00000000-0002FFFF correspond to the lowest 192kB of internal memory (SRAM) and are labeled "IRAM".

External memory is mapped to address range 80000000 – 80FFFFFF. This is 16MB and is labeled "EMIFCEO".

Linker Command File Example (part 2)

SECTIONS Tells the compiler/linker where to put things in memory

"vectors"	>	VECS
.text	>	IRAM
.stack	>	IRAM
.bss	>	IRAM
.cio	>	IRAM
.const	>	IRAM
.data	>	IRAM
.switch	>	IRAM
.sysmem	>	IRAM
.far	>	IRAM
.args	>	IRAM
.ppinfo	>	IRAM
.ppdata	>	IRAM
/* COFF section	าร	*/
.pinit	>	IRAM
.cinit	>	IRAM
/* EABI section	าร	*/
.binit	>	IRAM
.init_array	>	IRAM
.neardata	>	IRAM
.fardata	>	IRAM
.rodata	>	IRAM
.c6xabi.exidx	>	IRAM
.c6xabi.extab	>	IRAM

Both code and data are placed in the C6713 internal SRAM in this example. Interrupt vectors are also in SRAM.

vectors.asm

- This file contains your interrupt vectors
- ".sect" directive at top of file tells linker where (in memory) to put this code
- Each interrupt vector is composed of exactly 8 assembly language instructions

```
Example: INT15:
```

. MVKL .S2 _serialPortRcvISR, B0 MVKH .S2 _serialPortRcvISR, B0 B .S2 B0 NOP NOP NOP NOP

Debugging and Other Useful Features of the CCS IDE

- Sreakpoints and stepping through your code
- Watch variables
- Registers
- Plotting arrays of data

Breakpoints: Just Double-Click

 Breakpoints: stop code execution at this point to allow state examination and step-by-step execution.

Also try View->Breakpoints

⊖ _☉ Breakpoints 🔀			80	- 🗶 🐝 🍕 🔌 🖽 🖻	
Location	Name	Condition	Count	Action	
🔺 🔳 🍫 Spectrum Digital DSK-EVI	V				
📄 🔎 hello.c, line 4	Breakpo		0 (0)	Remain Halted	
📄 🔎 hello.c, line 6	Breakpo		0 (0)	Remain Halted	
🔽 🔎 stereoloop.c, line 56 ()) Breakpo		0 (0)	Remain Halted	

Using Breakpoints

View Local Variables

View -> Variables

						H Ma CC	Debug	а сс
	🕬= Variables 🖾 🤤	👷 Expressions	1000 Registers		#_ ₽	ti 🖻 🖗	8° 🗙 🕉	
	Name	Туре		Value		Location		
	🔺 🥭 temp	union <	anonymous_u	{}		0x00001FFC		
٠I	(×)= combo	unsigne	d int	0		0x00001FFC		
	a 🍃 channel	short[2]		0x00001FFC		0x00001FFC		
Ł	(×)= [0]	short		0		0x00001FFC		
L	(×)= [1]	short		0		0x00001FFE		
h								

All <u>local</u> variables should appear automatically. You can't see global variables here.

View Global Variables

• View->Expressions

3	(×)= Variables 🛱 Exp	ressions 🖾 🚻 Regi	sters 🖗) 📲 🖻 🚽 🗶	💥 🍪 📬 🖆 👘 🎽
7	Expression	Туре	Value	Address	
	(×)= hCodec	int	1	0x000023D0	
H	a 🌔 config	struct DSK6713_AI	{}	0x000023D4	
	🧧 🥭 regs	int[10]	0x000023D4	0x000023D4	
eł	(×)= [0]	int	23	0x000023D4	
ι	(×)= [1]	int	23	0x000023D8	
0	(×)= [2]	int	505	0x000023DC	
	(×)= [3]	int	505	0x000023E0	
e	(×)= [4]	int	17	0x000023E4	
	(×)= [5]	int	0	0x000023E8	
	(×)= <mark>[</mark> 6]	int	0	0x000023EC	
		• •	67 C	0.00000050	

 Type in any global variable name (or drag a variable name from the editor)

Some tips:

• You can change the number format (right click on the

"type")

You can force data into global/local variables by double clicking on the "value" and putting a new value in.

Registers: View->Registers

C	S Debug - Code Composer Studio		
ile	Edit View Project Tools Run	Scripts Window Help	
F٩		‱ @ → 18 18 💣 → 🕴 🛷 →	
	(%)= Variables or Expressions with Rec	gisters 🛛	
	Name	Value	Description
۲	Core Registers		
	1919 AO	0x000000F	Core
5	1919 A1	0x0000001	Core
2	1919 A2	0x0000000	Core
긔	1919 A3	0x34000000	Core
	1919 A4	0x0000000	Core
	1919 A5	0x0000001	Core
	1919 A6	0x0000000	Core
	1999 A7	0x0000001	Core
	8181 A8	0x0000000	Core
	1888 A9	0x000000F	Core
	888 A10	0x0000001	Core
	1888 A11	0x000090A8	Core
	1919 A12	0xB6F13FBA	Core
	1919 A13	0xFFE7E794	Core
	1919 A14	0xE799EE1C	Core
	1888 A15	0xE8FFBFFE	Core
	888 BO	0x00000F20	Core
	888 B1	0x00000DC	Core
	1010 B2	0x0000004	Core
	1000 B3	0x00000F98	Core
	888 B4	0x02030101	Core
	1919 B5	0x3C000000	Core
	3889 B6	0xFFFFFFF	Core
	1010 B7	0x7C000000	Core
	3819 B8	0x00000910	Core
	1000 B9	0x000011A0	Core
	3838 B10	0x6DDE0270	Core
	888 B11	0xDECB0A0F	Core
	1919 B12	0x38F98A32	Core
	888 B13	0x35DF9A03	Core
	1919 B14	0x00000200	Core
	1919 B15	0x00001FF8	Core
	IIII PC	0x00000F9C	Core
	1111 ISTP	0x0000000	Core

Plotting Arrays of Data

Tools -> Graph -> (Typically "Single Time")

Graph Properties	8	×
Property	Value	
Data Properties		
Acquisition Buffer Size	50	
Dsp Data Type	32 bit signed integer	
Index Increment	1	
Q_Value	0	
Sampling Rate HZ	1	
Start Address		
Display Properties		
Axis Display	✓ true	
Data Plot Style	Line	Contuno
Display Data Size	200	Can type
Grid Style	Major Grid	arraynamo
Magnitude Display Scale	Linear	allay hailie
Time Display Unit	sample	horo
Misc		HEIE
Use Dc Value For Graph	false	
I	mport Export	OK Cancel

Graph Windows: Plotting Arrays of Data

Profiling Your Code and Making it More Efficient

- How to estimate the execution time of your code.
- Output: A set on the optimizing compiler to produce more efficient code.
- Other factors affecting the efficiency of your code.

How to estimate code execution time when connected to the DSK

- 1. Open the source file you wish to profile
- 2. Set two breakpoints for the start/end of the code range you wish to profile

- 3. Build it and load .out file to the DSK
- 4. Run -> Clock -> Enable
- 5. Run -> Clock -> View
- 6. Run to the first breakpoint
- 7. Run -> Clock -> Reset (or double click the clock to reset the clock to zero)
- 8. Run to the second breakpoint
- 9. Clock will show raw number of execution cycles between breakpoints.

Optimizing Compiler

Properties for stereoloop		
type filter text	Optimization	
→ Resource		
General		
⊿ Build	Configuration: Debug [Active]	 Manage Configurations
t 🛛 🖌 C6000 Compiler		
Processor Options		
Optimization	Optimization level (and level ()	
Debag Options	Optimization level (opt_level, -O)	
g: Include Options	Optimize for code size (opt_for_space, -ms)	
Performance Advisor		
Advanced Options		
Advanced Debug Options		
Language Options		

Profiling results after compiler optimization

- Rebuild and reload the program to the DSK
- Use your breakpoint/clock method to profile the execution time
- In this example, we get a 5x-6x improvement with Level-3 Optimization
- Optimization gains can be much larger, e.g. 20x

Limitations of hardware profiling

- Variability of results
- Profiling is known to be somewhat inaccurate when connected to real hardware
- Breakpoint/clock profiling method may not always work with compiler-optimized code
- For the best results, TI recommends profiling your code in a cycle accurate simulator:
 - Change target configuration:
 - Connection = Texas Instruments Simulator
 - Device = C6713 Device Cycle Accurate Simulator, Little Endian
 - Need to create a new project for the simulator and copy your functions/code for profiling to this project <u>without calls to</u> <u>board-specific functions</u>

Tools -> Profile -> Setup and then Tools-> Profile -> View

Change target configuration for project to use cycle accurate simulator

Image: Stereoloop.c Image: Image: Image: Stereoloop.c Image: Stereoloop.c Image: Image: Stereoloop.c Image: Stereoloop.c Image: Stereoloop.c Image: Stereoloop.c	Advanced Setup
Basic General Setup	Advanced Setup
General Setup	Advanced Setup
This section describes the general configuration about the target.	
Connection Texas Instruments Simulator	Target Configura
Board or Device type filter text	Save Configuration
C6670 Device Functional Simulator, Big Endian	Save
C6678 Device Cycle Approximate Simulator, Big Endiar	T IC II
C6678 Device Cycle Approximate Simulator, Little Endi C6678 Device Functional Simulator, Big Endian	To test a connection
C6678 Device Functional Simulator, Little Endian	configuration file
C6713 Device Cycle Accurate Simulator, Big Endian	Test Connection
C672x CPU Cycle Accurate Simulator, Little Endian	Alternate Comm
C6745 Device Cycle Accurate Simulator, Little Endian 👻	
✓ ►	· · · · ·

🔊 🔻 🖌 🕺

Tools -> Profile -> Setup Profile Data Collection

😪 Profile Setup 🛛				
type filter text	Name: Active On: Activities Col	Configuration 1 TMS320C6713 llect Code Coverage and Exclusive Profile Data file all Functions for Total Cycles	Properties Properties	

Tools -> Profile -> View Function Profile Results

Q ≣ Pro	file Setup 🖽	Profile 8	X					💠 🔻 🔠	cycle.CPU	▾ # ≱ ▾ 🚮 8	
	Name	Calls	Excl Co	unt Min	Excl Count Max	Excl Count Average	Excl Count Total	Incl Count Min	Incl Count Max	Incl Count Average	Incl Count Total
1	main()	1			-	6336.00	6336		-	4118691-00	4118691
2	myfunc()	529		3849	3879	3843.37	2033143	7785	7941	7773.83	4112355

<u>Inclusive</u>: Includes calls to other functions <u>Exclusive</u>: Does not include calls to other functions Results should be more accurate than hardware profiling.

Other factors affecting code efficiency

- Memory
 - Code location (.text in linker command file)
 - internal SRAM memory (fast)
 - external SDRAM memory (typically 2-4x slower, depends on cache configuration)
 - Data location (.data in linker command file)
 - internal SRAM memory (fast)
 - external SDRAM memory (slower, depends on datatypes and cache configuration)
- Data types
 - Slowest execution is double-precision floating point
 - Fastest execution is fixed point, e.g. short

Example: Stereoloop project, changing .text and .data to external SDRAM:

About 2.5x slower an SRAM (can be worse)

TMS320C6000 C/C++Data Types

			Range		
Туре	Size	Representation	Minimum	Maximum	
char, signed char	8 bits	ASCII	-128	127	
unsigned char	8 bits	ASCII	0	255	
short	16 bits	2s complement	-32768	32767	
unsigned short	16 bits	Binary	0	65535	
int, signed int	32 bits	2s complement	-2147483648	214783647	
unsigned int	32 bits	Binary	0	4294967295	
long, signed long	40 bits	2s complement	-549755813888	549755813887	
unsigned long	40 bits	Binary	0	1099511627775	
enum	32 bits	2s complement	-2147483648	214783647	
float	32 bits	IEEE 32-bit	1.175494e-38†	3.40282346e+38	
double	64 bits	IEEE 64-bit	2.22507385e-308†	1.79769313e+308	
long double	64 bits	IEEE 32-bit	2.22507385e-308†	1.79769313e+308	

Final Remarks

You should have enough information to complete Lab 1

- Tutorials on course website
- Lab/lecture slides
- Reference material noted in slides
- Textbooks listed in syllabus
- Please make sure you understand what you are doing. Please ask questions if you are unsure.

